ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Твердомеры портативные динамические Equotip 2, Equotip 3

Назначение средства измерений

Твердомеры портативные динамические Equotip 2, Equotip 3 (далее - твердомеры) предназначены для измерений твердости металлов и сплавов по шкалам Виккерса, Роквелла, Бринелля и Шора D.

Описание средства измерений

Твердомеры представляют собой портативные приборы, состоящие из электронного блока и динамического датчика.

Принцип действия твердомеров основан на измерении отношения скоростей индентора при падении и отскоке от поверхности контролируемого изделия. Отношение скоростей индентора при падении и отскоке определяет твердость материала. Индентор, расположенный в динамическом датчике, представляет собой ударный элемент с твердосплавным наконечником.

Твердомер может быть укомплектован датчиками семи типов: D, DC, DL, C, E, S и G.

Датчики типа D и DC используется для измерений твёрдости изделий массой от 0,05 кг по широкому диапазону шкал твёрдости. Толщина измеряемых металлических изделий не менее 3 мм. Датчик DC отличается от датчика D габаритными размерами.

Датчик DL имеет тонкую опорную часть, позволяет проводить измерения в выемках и канавках. Минимальная масса образцов равна 0,05 кг. Толщина измеряемых металлических изделий не менее 3 мм.

Датчик типа С используется для измерений твёрдости изделий массой от 0,02 кг. Датчик характеризуется меньшей силой удара по сравнению с другими датчиками. Применяется для измерений твёрдости металлов на поверхности, на тонкостенных и чувствительных к ударам деталях. Минимальная толщина испытуемого изделия равна 1 мм.

Датчик типа E имеет боёк с искусственным алмазом и предназначен для длительного измерения твёрдых изделий массой от $0.05~\rm kr$. Толщина измеряемых металлических изделий не менее $3~\rm mm$.

Датчик типа G предназначен для измерений массивных изделий от 0,5 кг с минимальным радиусом кривизны поверхности равным 50 мм. Толщина измеряемых металлических изделий не менее 10 мм, либо изделие должно быть притёрто к массивной плите.

Датчик S может использоваться как датчик D, а также для измерений твёрдости материалов из твёрдых сталей.

Твердомеры позволяют справочно оценивать твердость сплавов, чугуна, предел прочности металлов на разрыв.

Твердомеры Equotip 2 и Equotip 3 различаются дизайном корпуса.

Доступ к метрологически значимой части ограничен конструкцией твердомеров.

Внешний вид твердомеров с указанием мест нанесения знака утверждения типа и пломбирования приведён на рисунке 1.

Рисунок 1 – Внешний вид твердомеров

Программное обеспечение

Встроенное программное обеспечение (Π O) используется для управления работой твердомера, а также для визуального отображения, хранения и статистической обработки результатов измерений.

Идентификационные признаки (данные) ПО приведены в таблице 1.

Таблица 1

Идентификационное	Номер версии (иденти-	Цифровой иденти-	Алгоритм вычисле-
наименование ПО	фикационный номер)	фикатор ПО	ния цифрового иден-
	ПО	(контрольная сумма	тификатора ПО
		исполняемого кода)	
EQUOTIP 3	v 1.8.0 и выше	92f16264c31b2d2ebee	MD5 Hash
		1f0faa44ce191	

Защита ΠO от непреднамеренных и преднамеренных изменений соответствует уровню «А» по M M 3286-2010.

Метрологические и технические характеристики

Метрологические характеристики твердомеров приведены в таблице 2:

Таблица 2

Датчик	Шкала измерения	Диапазоны измерений	Пределы допускаемых	
	твёрдости	твердости	абсолютных погрешно-	
			стей твердомеров	
D, DC, DL, E, S, C	Роквелла С	(20 – 70) HRC	± 2	
D, DC, DL	Роквелла В	(38 – 100) HRB		
G, E	Роквелла В	(48 - 100) HRB	± 4	
S	Роквелла В	(70 - 100) HRB		
D, DC, C, DL, E	Бринелля НВ	(81 – 650) HB		
G	Бринелля НВ	(90 – 650) HB	± 12	
S	Бринелля НВ	(101 – 640) HB		
D, DC, DL, E, C	Виккерса HV	(80 – 1000) HV		
S	Виккерса HV	(101 – 960) HV	± 15	
D, DC, C, E, DL, S	Шора D	(30 – 100) HSD	± 3	

Рабочие условия применения:	
- температура воздуха, °С	от 0 до 50;
- относительная влажность воздуха, при 25 °C, %, не более	
- атмосферное давление, кПа	от 84 до 106,7.
Напряжение питания постоянного тока, В:	
- внешнее через адаптер от сети переменного тока (100-240) В	12;
- внутреннее от ионно-литиевого аккумулятора	
Габаритные размеры электронного блока, мм, не более:	
- длина	170;
- ширина	200;
- высота	
Масса, кг, не более	0,78.

Знак утверждения типа

наносится на корпус твердомера в виде наклеиваемой плёнки и на титульный лист руководства по эксплуатации типографским или иным способом.

Комплектность средства измерений

В комплект поставки входят:
- электронный блок Equotip 2 или Equotip 3 (по заказу)
- датчик D
- датчик DC, DL, E, S, C, G (по заказу)
- опорное кольцо
- кабель USB
- карта памяти USB
- карта памяти USB
- сетевой адаптер
- кейс для переноски
- уплотнительная паста
- дополнительное оборудование
- руководство по эксплуатации EQ3 – 01 PЭ
- методика поверки EQ3 – 01 МП
- 1 экз.

Поверка

проводится в соответствии с документом EQ3 - 01 МП «Твердомеры портативные динамические Equotip 2, Equotip 3. Методика поверки», утверждённым ФГУП «ВНИИФТРИ» в декабре 2013 г.

Основные средства поверки: эталонные меры твёрдости 2 разряда типа МТР, МТБ, МТВ по ГОСТ 9031 - 75 и МТШ по ГОСТ 8.426-81.

Сведения о методиках (методах) измерений

Твердомеры портативные динамические Equotip 2, Equotip 3. Руководство по эксплуатации. EQ3 - 01 PЭ.

Нормативные и технические документы, устанавливающие требования к твердомерам портативным динамическим Equotip 2, Equotip 3

- 1 ГОСТ 8.062-85 «Государственная специальный эталон и государственная поверочная схема для средств измерений твёрдости по шкалам Бринелля».
- 2 ГОСТ 8.064-94 «Государственная поверочная схема для средств измерений твёрдости по шкалам Роквелла и Супер Роквелла».
- 3 ГОСТ 8.063-2007 «Государственная поверочная схема для средств измерений твёрдости металлов и сплавов по шкалам Виккерса».
- 4 ГОСТ 8.516-2001 «Государственная поверочная схема для средств измерений твёрдости металлов по шкале Шора D».
 - 5 Техническая документация фирмы-изготовителя.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством $P\Phi$ обязательным требованиям.

Изготовитель

Фирма «Proceq SA», Швейцария.

Адрес: Ringstrasse 2, CH-8603, Schwerzenbach, Switzerland

Тел.: +41 43 355-38-44 Факс: +41 43 355-38-08 E-mail: <u>info@proceq.com</u>

Заявитель

Общество с ограниченной ответственностью «Просек Рус» (ООО «Просек Рус») Юридический (почтовый) адрес: 197374, г. Санкт-Петербург, ул. Оптиков, д. 4, корп. 2, лит. А

Тел./факс: (812) 448-35-00 E-mail: info-russia@proceq.com

Испытательный центр

Федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений» (ФГУП «ВНИИФТРИ»).

Юридический адрес: 141570, Московская область, Солнечногорский р-н, гор. поселение Менделеево, Главный лабораторный корпус. Почтовый адрес: 141570, Московская область, Солнечногорский р-н, п/о Менделеево. Тел./факс (495) 526-63-00. E-mail: office@vniiftri.ru.

Аттестат аккредитации Φ ГУП «ВНИИ Φ ТРИ» по проведению испытаний средств измерений в целях утверждения типа № 30002-13 от 07.10.2013 г.

Заместитель Руководителя Федерального агентства по техниче	скому			
регулированию и метрологии				Ф.В. Булыгин
	М.п.	"	**	2014 г.