ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Устройства контрольно-измерительные для проверки релейной защиты Т 1000 PLUS, Т 2000, Т 3000

Назначение средства измерений

Устройства контрольно-измерительные для проверки релейной защиты Т 1000 PLUS, Т 2000, Т 3000 (далее – устройства) предназначены для

формирования и измерения напряжения и силы переменного и постоянного токов; измерения частоты;

измерения времени включения и отключения выключателей (реле);

измерения фазового угла;

измерения электрического сопротивления (опция с модулем IDC 400 A).

Описание средства измерений

Принцип действия устройств заключается в формировании испытательных сигналов с заданными параметрами для аппаратуры релейной защиты и автоматики (РЗиА) и регистрации откликов на них.

Устройства представляют собой генераторы напряжений и токов, выполненные на основе автотрансформатора и трансформаторов тока и напряжения, формирующие заданные напряжения и токи из напряжения (тока) питающей сети. Далее эти сигналы преобразуются в цифровую форму с помощью АЦП и индицируются на ЖК-дисплее.

Принцип действия устройств в части измерения времени включения и отключения выключателей (реле) основан на методе счета импульсов от встроенного генератора в течение стробирующего импульса, с последующим представлением результата в цифровой форме.

Принцип действия устройств в части измерения угла сдвига фаз основан на принципе преобразования фазового сдвига во временной интервал, формируемый в моменты перехода сигнала через ноль и пропорциональный значению измеряемого угла сдвига фаз.

По результатам измерений напряжений и токов на выходах и входах микропроцессор устройств по известным в электротехнике алгоритмам рассчитывает ряд параметров: коэффициенты трансформации, полярность и нагрузку измерительных и силовых трансформаторов, параметры кривых намагничивания, активную, реактивную, полную мощности, коэффициент мощности, комплексное сопротивление (импеданс) и его активную и реактивную составляющие.

Основные узлы устройств: регулируемый автотрансформатор, трансформаторы тока и напряжения, фазорегулятор, микропроцессор, схема интерфейсов, ЖК-дисплей, функциональные кнопки, ручки, индикаторы, источник питания.

Устройства оснащены защитой от перегрева и перегрузки.

Управление устройствами осуществляется как вручную оператором, так и с помощью внешнего ПК с предустановленным специальным программным обеспечением TDMS. Результаты измерений могут быть как сохранены во внутренней памяти устройств, так и переданы на внешний ПК по интерфейсам связи.

Устройства выпускаются в виде трех серий Т 1000 PLUS, Т 2000, Т 3000. Устройства серии Т 1000 PLUS применяются для проверки различных видов релейных защит. Устройства серии Т 2000 имеют функции проверки трансформаторов и реле максимального тока. Устройства серии Т 3000 сочетают в себе функции устройств Т 1000 PLUS и Т 2000. Кроме этого, устройства отличаются метрологическими характеристиками.

Устройства имеют сервисную функцию осциллографа для наблюдения формы волны напряжения и тока.

Серия устройств Т 1000 PLUS представлена четырьмя модификациями: Т 1000 PLUS, Т 1000-E PLUS, TD 1000 PLUS, TD 1000 PLUS 15 Hz, отличающихся функциональностью. Отличия модификаций приведены в таблице 1.

Таблица 1 – Функциональные характеристики модификаций серии Т 1000 PLUS

Характеристика	Модификация			
	T 1000 PLUS	Т 1000-Е	TD 1000	TD 1000
		PLUS	PLUS	PLUS 15 Hz
Основной выход переменного	250	250	250	250
тока, А				
Дополнительный выход	Нет	Нет	20	20
переменного тока, А				
Основной выход напряжения	250	500	250	250
переменного тока, В				
Основной выход напряжения	300	300	300	300
постоянного тока, В				
Дополнительный выход	250	500	250	250
напряжения переменного тока, В				
Дополнительный выход	240	240	240	Нет
напряжения постоянного тока, В				
Выходная мощность на частоте	10	10	10	25
15 Гц				

Опционально с устройствами серии Т 1000 PLUS могут поставляться:

модуль D 1000 для проверки дифференциальных реле;

фильтр FT 1000;

оптическая головка SHA 1000 для считывания показаний счетчиков электрической энергии;

конвертер выходов OUTPUTS TRANSDUCER для проверки маломощных реле.

Серия устройств Т 2000 представлена двумя модификациями: Т 2000 и Т 2000Е. Вторая модификация обладает большей выходной мощностью в режиме воспроизведения силы переменного тока. Кроме этого, модификация Т 2000 выпускается с двумя выходными напряжениями 3000 и 1200 В.

Опционально с устройствами серии Т 2000 могут поставляться:

модуль IDC 400 A для измерения сопротивлений постоянному току;

фильтр FT 1000;

комплект для измерения сопротивления заземления и удельного сопротивления грунта; токоизмерительные клещи (диапазон измерений до 100 A);

усилитель тока до 4000 A BU 2000 (в составе из трех модулей: основного, дополнительного и промежуточного);

защитное устройство SU 3000 для измерения импеданса линии.

Серия устройств Т 3000 представлена одной модификацией Т 3000, которая выпускается с двумя выходными напряжениями 3000 и 1200 В.

модуль D 1000 для проверки дифференциальных реле;

фильтр FT 1000;

оптическая головка SH-2003 для считывания показаний счетчиков электрической энергии;

модуль IDC 400 A для измерения сопротивлений постоянному току;

комплект для измерения сопротивления заземления и удельного сопротивления грунта;

усилитель тока до 4000~A~BU~2000 (в составе из трех модулей: основного, дополнительного и промежуточного);

защитное устройство SU 3000 для измерения импеданса линии.

Для связи с персональным компьютером устройства оснащаются интерфейсами USB (T 1000 PLUS) либо RS-232 (T 2000, T 3000).

Конструктивно устройства выполнены в металлических корпусах с защитными крышками и ручками для переноски. Все органы управления, индикации, гнезда цепей расположены на лицевой панели устройств.

Для предотвращения несанкционированного доступа винты крепления корпуса модулей систем пломбируются специальными наклейками, при повреждении которых остается несмываемый след.

Питание устройств – от сети переменного тока.

Устройство Т 1000 PLUS

Устройство TD 1000 PLUS

Устройство TD 1000 PLUS 15 Hz

Устройство Т 2000

Устройство Т 3000

Программное обеспечение

Характеристики программного обеспечения (ПО) приведены в таблице 2.

Встроенное ПО (микропрограмма) — внутренняя программа микропроцессора для обеспечения нормального функционирования прибора, управления интерфейсом и т.д. Оно реализовано аппаратно и является метрологически значимым. Микропрограмма заносится в программируемое постоянное запоминающее устройство (ППЗУ) приборов предприятиемизготовителем и не может быть изменена пользователем.

Внешнее ПО (TDMS) применяется для связи с компьютером через интерфейсы связи. Оно представляет собой программу, позволяющую управлять системой с помощью внешнего ПК; сохранять установки и параметры измерений для различных видов проверок; проводить быструю оценку и сравнения результатов измерений; распечатывать отчеты; сохранять результаты измерений на жестком диске компьютера, экспортировать отчеты в формат MS Access. Внешнее ПО не является метрологически значимым.

Таблица 2 – Характеристики программного обеспечения (ПО)

Mapakieph	cinkii iipoi pawiw	illor o oocciic ici	ши (110)	
Наиме-	Идентифика-	Номер	Цифровой идентификатор	Алгоритм
нование	ционное	версии	ПО (контрольная сумма	вычисления
ПО	наименование	(идентифика-	исполняемого кода)	цифрового
	ПО	ционный		идентификатора
		номер) ПО		ПО
Встроен-	Микро-	Не ниже 1.35	_	_
ное	программа			
Встроен-	Микро-	Не ниже		
ное	программа	1.02.04		
Встроен-	Микро-	Не ниже 1.47	-	-
ное	программа			
Встроен-	Микро-	Не ниже 1.47	-	_
ное	программа			
Внешнее	TDMS	Не ниже 6.5.3	_	_
	Наименование ПО Встроенное Встроенное Встроенное	Наименование пионное наименование ПО Наименов Программа Наименов Программа	Наименование пО наименование ПО наименование ПО наименование ПО номер) ПО номер) ПО номер ПО	нование ПО ционное наименование ПО версии (идентификационный номер) ПО ПО (контрольная сумма исполняемого кода) Встроенное Микропрограмма Не ниже 1.35 — Встроенное Микропрограмма Не ниже 1.02.04 — Встроенное Микропрограмма Не ниже 1.47 — Встроенное Микропрограмма Не ниже 1.47 — Встроенпое Микропрограмма Не ниже 1.47 —

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений – «А» в соответствии с МИ 3286-2010.

Метрологические и технические характеристики

Устройства серии Т 1000 PLUS

Таблица 3 — Метрологические характеристики устройств в режиме воспроизведения силы переменного тока частотой $15-500~\Gamma$ ц

Выход	Пределы воспроизведения	Разрешение	Пределы допускаемой
			абсолютной погрешности
10 A	1,999 A	1 мА	$\pm (0,01$ Хизм. $+ 5$ мА)
	19,99 A	10 мА	$\pm (0,01$ Хизм. $+ 20$ мА)
40 A	7,999 A	4 мА	$\pm (0,01$ Хизм. $+ 20$ мА)
	79,99 A	40 мА	$\pm (0,01$ Хизм. $+ 80$ мА)

Выход	Пределы воспроизведения	Разрешение	Пределы допускаемой
			абсолютной погрешности
100 A	19,99 A	10 мА	$\pm (0,01$ Хизм. $+ 50$ мА)
	199,9 A	100 мА	$\pm (0.01$ Хизм. $+ 200$ мА)
	249,9 A*	100 мА	$\pm (0,01$ Хизм. $+ 200$ мА)

Примечание: Хизм. – измеренное значение величины. * – в течение 1 с.

Таблица 4 – Метрологические характеристики устройств в режиме воспроизведения напряжения переменного тока частотой 15 – 500 Гц

Выход	Пределы воспроизведения	Разрешение	Пределы допускаемой
			абсолютной погрешности
250 B	1,999 B	1 мВ	$\pm (0,01$ Хизм. $+ 50$ мВ)
	19,99 B	10 мВ	$\pm (0,01$ Хизм. $+ 50$ мВ)
	199,9 B	100 мВ	$\pm (0.01$ Хизм. $+ 200 \text{ мB})$
	299,9 B	300 мВ	$\pm (0.01$ Хизм. $+ 300 \text{ мB})$
260 B	1,999 B	1 мВ	$\pm (0,01$ Хизм. $+ 10$ мВ)
	19,99 B	10 мВ	$\pm (0,01$ Хизм. $+ 20$ мВ)
	199,9 B	100 мВ	$\pm (0.01$ Хизм. $+ 200 \text{ мB})$
	299,9 B	300 мВ	$\pm (0,01$ Хизм. $+ 300 \text{ мB})$

Примечание: Хизм. – измеренное значение величины.

Таблица 5 – Метрологические характеристики устройств в режиме воспроизведения напряжения постоянного тока

Выход	Пределы воспроизведения	Разрешение	Пределы допускаемой
			абсолютной погрешности
300 B	1,999 B	1 мВ	$\pm (0,005$ Хизм. $+ 20$ мВ)
	19,99 B	10 мВ	$\pm (0,005$ Хизм. $+ 50$ мВ)
	199,9 B	100 мВ	$\pm (0.005 X$ изм. $+ 200 \text{ мB})$
	399,9 B	300 мВ	$\pm (0,005$ Хизм. $+ 300 \text{ мB})$
240 B	19,99 B	10 мВ	$\pm (0,005$ Хизм. $+ 20$ мВ)
	199,9 B	100 мВ	$\pm (0,005$ Хизм. $+ 200 \text{ мB})$
	299,9 B	300 мВ	$\pm (0,005$ Хизм. $+ 300 \text{ мB})$

Примечание: Хизм. – измеренное значение величины.

Таблица 6 – Метрологические характеристики устройств в режиме измерения силы переменного тока частотой 15 – 500 Гц

Вход	Пределы измерения	Разрешение	Пределы допускаемой
			абсолютной погрешности
10 A	1,999 A	1 мА	$\pm (0,01$ Хизм. $+ 2$ мА)
	9,99 A	10 мА	$\pm (0,01$ Хизм. $+ 20$ мА)

Таблица 7 – Метрологические характеристики устройств в режиме измерения силы постоянного тока

Вход	Пределы измерения	Разрешение	Пределы допускаемой
			абсолютной погрешности
20 мА	20 мА	0,1 мА	$\pm (0,005$ Хизм. $+ 0,1$ мА)
10 A	1,999 A	1 мА	$\pm (0.005 X$ изм. $+ 2 MA)$
	9,99 A	10 мА	$\pm (0,005$ Хизм. $+ 20$ мА)

Таблица 8 — Метрологические характеристики устройств в режиме измерения напряжения переменного тока частотой $15-500~\Gamma$ ц

Вход	Пределы измерения	Разрешение	Пределы допускаемой
			абсолютной погрешности
600 B	9,999 B	2 мВ	$\pm (0,01$ Хизм. $+ 10 \text{ мB})$
	99,99 B	10 мВ	$\pm (0,01$ Хизм. $+ 20$ мВ)
	599,9 B	100 мВ	$\pm (0,01$ Хизм. $+ 200 \text{ мB})$

Примечание: Хизм. – измеренное значение величины.

Таблица 9 – Метрологические характеристики устройств в режиме измерения напряжения постоянного тока

Вход	Пределы измерения	Разрешение	Пределы допускаемой
			абсолютной погрешности
600 B	9,999 B	2 мВ	$\pm (0.005 X$ изм. $+ 10 \text{ мB})$
	99,99 B	10 мВ	$\pm (0.005 X$ изм. $+ 20 \text{ мB})$
	599,9 B	100 мВ	$\pm (0.005$ Хизм. $+ 200$ мВ)

Примечание: Хизм. – измеренное значение величины.

Таблица 10 – Метрологические характеристики устройств в режиме измерения частоты

Измеряемая величина	Диапазон измерений	Пределы допускаемой
		абсолютной погрешности
Частота	15 – 550 Гц	± 0,0001 Гц

Таблица 11 – Метрологические характеристики устройств в режиме измерения времени включения и отключения выключателей (реле)

Измеряемая величина	Диапазон измерений	Пределы допускаемой
		абсолютной погрешности
Время включения и	0 – 9,999 c	$\pm (0,00005$ Хизм. $+ 1$ мс)
отключения выключателей	10,0 – 99,99 c	$\pm (0,00005$ Хизм. $+ 10$ мс)
(реле)	100,0 – 999,9 c	$\pm (0,00005$ Хизм. $+ 100$ мс)
	1000 – 9999 c	± (0,0005Xизм. + 1 c)

Примечание: Хизм. – измеренное значение величины.

Таблица 12 – Метрологические характеристики устройств в режиме измерения фазового угла

Измеряемая величина	Диапазон измерений	Пределы допускаемой абсолютной погрешности
Фазовый угол	0 – 360°	± 1°

Устройства серии Т 2000

Таблица 13 — Метрологические характеристики устройств в режиме воспроизведения силы переменного тока частотой $15-500~\Gamma$ ц

Выход	Пределы воспроизведения	Разрешение	Пределы допускаемой
			абсолютной погрешности
10 A	1,999 A	1 мА	$\pm (0,005$ Хизм. $+ 5$ мА)
	19,99 A	10 мА	$\pm (0,005$ Хизм. $+ 20$ мА)
40 A	7,999 A	4 мА	$\pm (0,005$ Хизм. $+ 20$ мА)
	79,99 A	40 мА	$\pm (0,005$ Хизм. $+ 80$ мА)
800 A	19,99 A	20 мА	$\pm (0,005$ Хизм. $+ 50$ мА)
	199,9 A	200 мА	$\pm (0.005 X$ изм. $+ 400 \text{ мA})$
	999,9 A	1 A	± (0,005Хизм. + 1 A)

Примечание: Хизм. – измеренное значение величины.

Таблица 14 – Метрологические характеристики устройств в режиме воспроизведения силы постоянного тока

Выход	Пределы воспроизведения	Разрешение	Пределы допускаемой
Былод	пределы востроизведения	тизрешение	абсолютной погрешности
6 A	199,9 мА	100 мкА	$\pm (0,005$ Хизм. $+ 200$ мкА)
	1,999 A	1 мА	± (0,005Xизм. + 2 мА)
	19,99 A	10 мА	$\pm (0,005$ Хизм. $+ 20$ мА)

Примечание: Хизм. – измеренное значение величины.

Таблица 15 – Метрологические характеристики устройств в режиме воспроизведения напряжения переменного тока частотой 15 – 500 Гц

Выход	Пределы воспроизведения	Разрешение	Пределы допускаемой
			абсолютной погрешности
250 B	19,99 B	20 мВ	$\pm (0.005 X$ изм. $+ 50 \text{ мB})$
	199,9 B	200 мВ	$\pm (0,005$ Хизм. $+ 400 \text{ мB})$
	299,9 B	300 мВ	$\pm (0,005$ Хизм. $+ 600$ мВ)
3000 B	199,9 B	200 мВ	$\pm (0,005$ Хизм. $+ 0,5 B)$
	1999 B	2 B	± (0,005Хизм. + 4 В)
	2999 B	3 B	$\pm (0,005$ Хизм. $+ 6 B)$

Примечание: Хизм. – измеренное значение величины.

Таблица 16 – Метрологические характеристики устройств в режиме измерения силы переменного тока частотой 15 – $500~\Gamma\mu$

Вход	Пределы измерения	Разрешение	Пределы допускаемой
			абсолютной погрешности
10 A	1,999 A	1 мА	$\pm (0,005$ Хизм. $+ 4$ мА)
	9,99 A	10 мА	$\pm (0,005$ Хизм. $+ 40$ мА)

Примечание: Хизм. – измеренное значение величины.

Таблица 17 – Метрологические характеристики устройств в режиме измерения силы постоянного тока

110010111110	110 V 10/1111101 0 10/11W				
Вход	Пределы измерения	Разрешение	Пределы допускаемой		
			абсолютной погрешности		
20 мА	20 MA	0.1 мА	$\pm (0.005 \text{Xu3m.} + 0.2 \text{ mA})$		

Таблица 18 — Метрологические характеристики устройств в режиме измерения напряжения переменного тока частотой 15 — $500~\Gamma \mu$

Вход	Пределы измерения	Разрешение	Пределы допускаемой
			абсолютной погрешности
10 B	0,199 B	1 мВ	$\pm (0,005$ Хизм. $+ 2$ мВ)
	1,999 B	2 мВ	$\pm (0,005$ Хизм. $+ 10$ мВ)
	9,999 B	10 мВ	$\pm (0,005$ Хизм. $+ 50$ мВ)
600 B	19,99 B	10 мВ	$\pm (0,005$ Хизм. $+ 40$ мВ)
	199,9 B	50 мВ	$\pm (0,005$ Хизм. $+ 400$ мВ)
	599,9 B	300 мВ	$\pm (0.005 X$ изм. $+ 1000 \text{ мB})$

Таблица 19 – Метрологические характеристики устройств в режиме измерения напряжения постоянного тока

Вход	Пределы измерения	Разрешение	Пределы допускаемой
			абсолютной погрешности
600 B	19,99 B	10 мВ	$\pm (0.005 X$ изм. $+ 40 \text{ мB})$
	199,9 B	50 мВ	$\pm (0,005 X$ изм. $+ 400 \text{ мB})$
	599,9 B	300 мВ	$\pm (0.005 X$ изм. $+ 1000 \text{ мB})$

Примечание: Хизм. – измеренное значение величины.

Таблица 20 – Метрологические характеристики устройств в режиме измерения частоты

Измеряемая величина	Диапазон измерений	Пределы допускаемой абсолютной погрешности
Частота	50/60 Гц	± 0,001 Гц

Таблица 21 – Метрологические характеристики устройств в режиме измерения времени включения и отключения выключателей (реле)

promore that is a strain of the strain of th			
Измеряемая величина	Диапазон измерений	Пределы допускаемой	
		абсолютной погрешности	
Время включения и	0 – 9,999 c	$\pm (0,00005$ Хизм. $+ 1$ мс)	
отключения выключателей	10,0 – 99,99 c	± (0,00005Xизм. + 10 мс)	
(реле)	100,0 – 999,9 c	$\pm (0,00005$ Хизм. $+ 100$ мс)	
	1000 – 9999 c	± (0,00005Xизм. + 1 c)	

Таблица 22 – Метрологические характеристики устройств в режиме измерения фазового угла

Измеряемая величина	Диапазон измерений	Пределы допускаемой
		абсолютной погрешности
Фазовый угол	0 – 360°	± 1°

Таблица 23 — Метрологические характеристики устройств в режиме измерения электрического сопротивления при совместном использовании с модулем IDC 400 A

Измеряемая величина	Пределы измерений	Пределы допускаемой
_		абсолютной погрешности
Электрическое	100 мкОм	$\pm (0.02$ Хизм. $+ 2$ мкОм)
сопротивление (ток 400 А,	1 мОм	$\pm (0.02 X$ изм. $+ 10 мкОм)$
4-х проводная схема	10 мОм	$\pm (0.02 X$ изм. $+ 100 \text{ мкОм})$
измерения)	100 мОм	$\pm (0.02 X$ изм. + 1 мОм)
	1000 мОм	$\pm (0.02 X$ изм. + $10 \text{ мOм})$

Устройства серии Т 3000

Таблица 24 — Метрологические характеристики устройств в режиме воспроизведения силы переменного тока частотой $15-500~\Gamma$ ц

	mepemennoro roka meroron re 2001 B			
Выход	Пределы воспроизведения	Разрешение	Пределы допускаемой	
			абсолютной погрешности	
10 A	1,999 A	1 мА	$\pm (0,005$ Хизм. $+ 5$ мА)	
	19,99 A	10 мА	$\pm (0,005$ Хизм. $+ 20$ мА)	
40 A	7,999 A	4 мА	$\pm (0,005$ Хизм. $+ 20$ мА)	
	79,99 A	40 мА	$\pm (0,005$ Хизм. $+ 80$ мА)	
800 A	19,99 A	20 мА	$\pm (0,005$ Хизм. $+ 50$ мА)	
	199,9 A	200 мА	$\pm (0,005 X$ изм. $+ 400 \text{ мA})$	
	999,9 A	1 A	$\pm (0,005$ Хизм. $+ 1 A)$	

Примечание: Хизм. – измеренное значение величины.

Таблица 25 — Метрологические характеристики устройств в режиме воспроизведения силы постоянного тока

Выход	Пределы воспроизведения	Разрешение	Пределы допускаемой
			абсолютной погрешности
6 A	199,9 мА	100 мкА	$\pm (0,005$ Хизм. $+ 200$ мк A)
	1,999 A	1 мА	$\pm (0,005 X$ изм. $+ 2 MA)$
	19,99 A	10 мА	$\pm (0,005$ Хизм. $+ 20$ мА)

Примечание: Хизм. – измеренное значение величины.

Таблица 26 – Метрологические характеристики устройств в режиме воспроизведения напряжения переменного тока частотой 15 – 500 Ги

паприжени	паприжения перешенного тока пастотон 13 300 г ц				
Выход	Пределы воспроизведения	Разрешение	Пределы допускаемой		
			абсолютной погрешности		
250 B	19,99 B	20 мВ	$\pm (0,005$ Хизм. $+ 50$ мВ)		
	199,9 B	200 мВ	$\pm (0,005 X$ изм. $+ 400 \text{ мB})$		
	299,9 B	300 мВ	$\pm (0,005 X$ изм. $+ 600 \text{ мB})$		
3000 B	199,9 B	200 мВ	$\pm (0,005$ Хизм. $+ 0,5 B)$		
	1999 B	2 B	$\pm (0,005$ Хизм. $+ 4 B)$		
	2999 B	3 B	$\pm (0.005 X$ изм. $+ 6 B$)		

Таблица 27 — Метрологические характеристики устройств в режиме воспроизведения напряжения переменного тока частотой 15 — 500 Гц (доп. выходы)

Выход	Пределы воспроизведения	Разрешение	Пределы допускаемой
			абсолютной погрешности
65 B,	19,99 B	20 мВ	$\pm (0.005 X$ изм. $+ 50 \text{ мB})$
130 B	199,9 B	200 мВ	$\pm (0,005$ Хизм. $+400$ мВ)
260 B	19,99 B	20 мВ	± (0,005Хизм. + 50 мВ)
	199,9 B	200 мВ	$\pm (0,005$ Хизм. $+ 400$ мВ)
	299,9 B	300 мВ	± (0,005 X изм. + 600 мВ)

Таблица 28 – Метрологические характеристики устройств в режиме воспроизведения напряжения постоянного тока

Выход	Пределы воспроизведения	Разрешение	Пределы допускаемой
			абсолютной погрешности
130 B	19,99 B	20 мВ	$\pm (0.005 X$ изм. $+ 50 \text{ мB})$
	199,9 B	100 мВ	$\pm (0,005$ Хизм. $+ 200 \text{ мB})$
260 B	19,99 B	20 мВ	$\pm (0.005 X$ изм. $+ 50 \text{ мB})$
	199,9 B	100 мВ	$\pm (0,005$ Хизм. $+ 200 \text{ мB})$
	299,9 B	300 мВ	$\pm (0,005$ Хизм. $+ 600$ мВ)

Примечание: Хизм. – измеренное значение величины.

Таблица 29 — Метрологические характеристики устройств в режиме измерения силы переменного тока частотой $15-500~\Gamma\mu$

Вход	Пределы измерения	Разрешение	Пределы допускаемой
			абсолютной погрешности
10 A	1,999 A	1 mA	$\pm (0,005$ Хизм. $+ 4$ мА)
	9,99 A	10 мА	$\pm (0,005$ Хизм. $+ 40$ мА)

Примечание: Хизм. – измеренное значение величины.

Таблица 30 – Метрологические характеристики устройств в режиме измерения силы постоянного тока

Вход	Пределы измерения	Разрешение	Пределы допускаемой абсолютной погрешности
20 мА	20 мА	0,1 мА	$\pm (0,005$ Хизм. $+ 0,2$ мА)

Примечание: Хизм. – измеренное значение величины.

Таблица 31 — Метрологические характеристики устройств в режиме измерения напряжения постоянного и переменного тока частотой $15-500~\Gamma$ ц

noctommero i nepemennoro roku tueroron 13 200 r g				
Вход	Пределы измерения	Разрешение	Пределы допускаемой	
			абсолютной погрешности	
10 B	99,99 мВ	0,01 мВ	$\pm (0,005$ Хизм. $+ 2$ мВ)	
	9,999 B	2 мВ	$\pm (0,005$ Хизм. $+ 10$ мВ)	
	19,99 B	10 мВ	$\pm (0,005$ Хизм. $+ 50$ мВ)	
600 B	9,999 B	1 мВ	$\pm (0.005 X$ изм. $+ 40 \text{ мB})$	
	199,9 B	50 мВ	$\pm (0,005 X$ изм. $+ 400 \text{ мB})$	
	999,9 B	300 мВ	$\pm (0.005 X$ изм. $+ 1000 \text{ мB})$	

Таблица 32 – Метрологические характеристики устройств в режиме измерения частоты

Измеряемая величина	Диапазон измерений	Пределы допускаемой абсолютной погрешности
Частота	50/60 Гц	± 0,001 Гц

Таблица 33 – Метрологические характеристики устройств в режиме измерения времени

включения и отключения выключателей (реле)

Измеряемая величина	Диапазон измерений	Пределы допускаемой
		абсолютной погрешности
Время включения и	0 – 9,999 c	$\pm (0,00005$ Хизм. $+ 1$ мс)
отключения выключателей	10,0 – 99,99 c	$\pm (0,00005$ Хизм. $+ 10$ мс)
(реле)	100,0 – 999,9 c	± (0,00005 Xизм. + 100 мс)
	1000 – 9999 c	± (0,0005Xизм. + 1 c)

Примечание: Хизм. – измеренное значение величины.

Таблица 34 – Метрологические характеристики устройств в режиме измерения фазового угла

Измеряемая величина	Диапазон измерений	Пределы допускаемой абсолютной погрешности
Фазовый угол	0 − 360°	± 1°

Таблица 35 — Метрологические характеристики устройств в режиме измерения электрического сопротивления при совместном использовании с модулем IDC 400 A

Измеряемая величина	Пределы измерений	Пределы допускаемой
		абсолютной погрешности
Электрическое	100 мкОм	$\pm (0.02 X$ изм. $+ 2$ мкОм)
сопротивление (ток 400 А,	1 мОм	$\pm (0.02 X$ изм. $+ 10$ мк O м)
4-х проводная схема	10 мОм	$\pm (0.02$ Хизм. $+ 100$ мкОм)
измерения)	100 мОм	$\pm (0.02$ Хизм. + 1 мОм)
	1000 мОм	$\pm (0,02$ Хизм. $+ 10 \text{ мОм})$

Примечание: Хизм. – измеренное значение величины.

Таблица 36 – Технические характеристики устройств серии Т 1000 PLUS

Характеристика	Значение
Температурный коэффициент	$\pm (0,0005$ Хизм. $+ 0,0002$ Хк.).
Напряжение сети питания, В	230 ± 15 %
Частота сети питания, Гц	50/60
Габаритные размеры, мм, (длина×ширина×высота)	
- устройства серии Т 1000 PLUS	380×300×240
- модуль D 1000	325×290×290
- фильтр FT 1000	220×250×310
Масса, кг	
- устройства Т 1000 PLUS, Т 1000-E PLUS	19
- устройства TD 1000 PLUS, TD 1000 PLUS 15 Hz	21
- модуль D 1000	7
- фильтр FT 1000	15
Нормальные условия применения:	
- температура окружающего воздуха, °С	25 ± 2
- относительная влажность воздуха, %	до 80

Рабочие условия применения:	
- температура окружающего воздуха, °С	от 0 до + 50
- относительная влажность воздуха, %	до 80 без конденсации

Таблица 37 – Технические характеристики устройств серии Т 2000

Характеристика	Значение
Температурный коэффициент	\pm (0,0005Хизм. + 0,0002Хк.).
Напряжение сети питания, В	230 ± 15 %
Частота сети питания, Гц	50/60
Габаритные размеры, мм, (длина×ширина×высота)	
- устройства серии T 2000	455×325×290
- модуль высокого тока 400 A	285×325×295
- фильтр FT 1000	220×250×310
- модуль основной усилителя BU 2000	190×210
- модуль дополнительный усилителя BU 2000	190×120
- модуль промежуточный усилителя BU 2000	330×300×200
- защитное устройство SU 3000	550×450×250
Масса, кг	
 устройства Т 2000 	31
- модуль высокого тока 400 A	20
- фильтр FT 1000	15
- модуль основной усилителя BU 2000	11
- модуль дополнительный усилителя BU 2000	10
- модуль промежуточный усилителя BU 2000	5
- защитное устройство SU 3000	20
Нормальные условия применения:	
- температура окружающего воздуха, °С	25 ± 2
- относительная влажность воздуха, %	до 80
Рабочие условия применения:	
- температура окружающего воздуха, °С	от 0 до + 50
- относительная влажность воздуха, %	до 95 без конденсации

Таблица 38 – Технические характеристики устройств серии Т 3000

Характеристика	Значение
Температурный коэффициент	$\pm (0,0005$ Хизм. $+ 0,0002$ Хк.).
Напряжение сети питания, В	230 ± 10 %
Частота сети питания, Гц	50/60
Габаритные размеры, мм, (длина×ширина×высота)	
- устройства серии Т 3000	455×325×290
- модуль высокого тока 400 A	285×325×295
- фильтр FT 1000	220×250×310
- модуль основной усилителя BU 2000	190×210
- модуль дополнительный усилителя BU 2000	190×120
- модуль промежуточный усилителя BU 2000	330×300×200
- защитное устройство SU 3000	550×450×250
Масса, кг	
- устройства T 3000	34
- модуль высокого тока 400 A	20
- фильтр FT 1000	15
- модуль основной усилителя BU 2000	11
- модуль дополнительный усилителя BU 2000	10

Характеристика	Значение
- модуль промежуточный усилителя BU 2000	5
- защитное устройство SU 3000	20
Нормальные условия применения:	
- температура окружающего воздуха, °С	25 ± 2
- относительная влажность воздуха, %	до 80
Рабочие условия применения:	
- температура окружающего воздуха, °С	от 0 до + 50
- относительная влажность воздуха, %	до 95 без конденсации

Знак утверждения типа

Знак утверждения типа наносится методом трафаретной печати на лицевую панель приборов и типографским способом на титульный лист руководства по эксплуатации.

Комплектность средства измерений

Таблица 39 – Комплектность устройств серии Т 1000 PLUS

Таолица 37 – Комплектноств устройств серий 1 1000 г.С.		
Наименование	Код	Примечание
Устройство Т 1000 PLUS в комплекте с набором кабелей, ПО	91093	
TDMS		
Устройство Т 1000-Е PLUS в комплекте с набором кабелей, ПО	92093	
TDMS		
Устройство TD 1000 PLUS в комплекте с набором кабелей, ПО	96093	
TDMS		
Устройство TD 1000 PLUS 15 Hz в комплекте с набором	95093	
кабелей, ПО TDMS		
Транспортировочный кейс	17093	Опция
Набор дополнительных кабелей	18093	Опция
Модуль D 1000	40093	Опция
Фильтр FT 1000	16093	Опция
Оптическая головка SHA 1000	43102	Опция
Конвертер выходов OUTPUTS TRANSDUCER	13093	Опция
Кабель соединительный для проверки реле АВВ	11093	Опция
Кабель соединительный для проверки реле THYTRONIC	12093	Опция
Руководство по эксплуатации		
Методика поверки		
1		

Таблица 40 – Комплектность устройств серии Т 2000

Наименование	Код	Примечание
Устройство Т 2000 с выходом 3000 В в комплекте с набором	10110	
кабелей, ПО TDMS		
Устройство Т 2000 с выходом 1200 В в комплекте с набором	30110	
кабелей, ПО TDMS		
Устройство Т 2000Е с выходом 1200 В в комплекте с набором	50110	
кабелей, ПО TDMS		
Транспортировочный кейс алюминиевый	17102	Опция
Транспортировочный кейс пластиковый	24102	Опция
Токоизмерительные клещи	16102	Опция
Термопринтер	14102	Опция

Модуль IDC 400 A для измерения сопротивления постоянному току 13102 Опция Комплект для измерения сопротивления заземления и удельного сопротивления грунта 19102 Опция Усилитель тока BU 2000 в составе трех модулей: основного, дополнительного, промежуточного, кабелей, пластикового кейса 50102 — Опция Фильтр FT 1000 16093 Опция Защитное устройство SU 3000 для измерения импеданса линии. 26102 Опция	Наименование	Код	Примечание
Комплект для измерения сопротивления заземления и удельного сопротивления грунта 19102 Опция Усилитель тока ВU 2000 в составе трех модулей: основного, дополнительного, промежуточного, кабелей, пластикового кейса 50102 — 56102 Фильтр FT 1000 16093 Опция	Модуль IDC 400 A для измерения сопротивления постоянному	13102	Опция
сопротивления грунта Усилитель тока ВU 2000 в составе трех модулей: основного, дополнительного, промежуточного, кабелей, пластикового кейса 50102 — Опция 56102 Фильтр FT 1000 16093 Опция	току		
Усилитель тока ВU 2000 в составе трех модулей: основного, дополнительного, промежуточного, кабелей, пластикового кейса 50102 – 56102 Фильтр FT 1000 16093 Опция	Комплект для измерения сопротивления заземления и удельного	19102	Опция
дополнительного, промежуточного, кабелей, пластикового кейса 56102 Фильтр FT 1000 16093 Опция	сопротивления грунта		
Фильтр FT 1000 16093 Опция	Усилитель тока BU 2000 в составе трех модулей: основного,	50102 -	Опция
1	дополнительного, промежуточного, кабелей, пластикового кейса	56102	
Зашитное устройство SU 3000 для измерения импеданса линии. 26102 Опция	Фильтр FT 1000	16093	Опция
\mathbf{r}	Защитное устройство SU 3000 для измерения импеданса линии.	26102	Опция
Руководство по эксплуатации	Руководство по эксплуатации		
Методика поверки	Методика поверки		

Таблица 41 – Комплектность устройств серии Т 3000

Таолица 41 – Комплектность устройств серии Т 3000		
Наименование	Код	Примечание
Устройство Т 3000 с выходом 3000 В в комплекте с набором	10102	
кабелей, ПО TDMS		
Устройство Т 3000 с выходом 1200 В в комплекте с набором	30102	
кабелей, ПО TDMS		
Транспортировочный кейс алюминиевый	17102	Опция
Транспортировочный кейс пластиковый	24102	Опция
Токоизмерительные клещи	16102	Опция
Термопринтер	14102	Опция
Модуль IDC 400 A для измерения сопротивления постоянному	13102	Опция
току		
Оптическая головка SH-2003	43102	Опция
Модуль D 1000	40093	Опция
Комплект для измерения сопротивления заземления и удельного	19102	Опция
сопротивления грунта		
Фильтр FT 1000	16093	Опция
Защитное устройство SU 3000 для измерения импеданса линии.	26102	Опция
Усилитель тока BU 2000 в составе трех модулей: основного,	50102 -	Опция
дополнительного, промежуточного, кабелей, пластикового кейса	56102	
Руководство по эксплуатации		
Методика поверки		

Поверка

осуществляется по документу МП 56375-14 «Устройства контрольно-измерительные для проверки релейной защиты Т 1000 PLUS, Т 2000, Т 3000. Методика поверки», утвержденному Φ ГУП «ВНИИМС» в ноябре 2013 г.

Средства поверки: трансформатор тока измерительный лабораторный ТТИ-5000.5 (Госреестр № 27007-04); измеритель многофункциональный характеристик переменного тока РЕСУРС-UF2-ПТ (Госреестр № 29470-05); мультиметр 3458A (Госреестр № 25900-03); шунты измерительные стационарные с ограниченной взаимозаменяемостью 75 ШИСВ.1 (Госреестр № 24112-02); трансформатор напряжения измерительный эталонный NVRD 40 (Госреестр № 32397-12); калибратор многофункциональный Fluke 5520A (Госреестр № 51160-12); частотомер электронно-счетный Ч3-63/1 (Госреестр № 9084-90); измеритель параметров цифровой Ф291 (Госреестр № 9223-83); катушка электрического сопротивления Р310 (Госреестр № 1162-58).

Сведения о методиках (методах) измерений

Сведения о методиках (методах) измерений приведены в руководствах по эксплуатации.

Нормативные и технические документы, устанавливающие требования к устройствам контрольно-измерительным для проверки релейной защиты Т 1000 PLUS, Т 2000, Т 3000

- 1. ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 2. ГОСТ 14014-91 Приборы и преобразователи измерительные цифровые напряжения, тока, сопротивления. Общие технические требования и методы испытаний.
- 4. ГОСТ 8.022-91 ГСИ. Государственный первичный эталон и государственная поверочная схема для средств измерений силы постоянного электрического тока в диапазоне от $1\cdot 10^{-16}$ до 30 A.
- 5. ГОСТ Р 8.648-2008 ГСИ. Государственная поверочная схема для средств измерений переменного электрического напряжения до 1000 B в диапазоне частот от $1 \cdot 10^{-2} 2 \cdot 10^9 \text{ Гц}$.
- 6. ГОСТ 8.027-2001 ГСИ. Государственная поверочная схема для средств измерений постоянного электрического напряжения и электродвижущей силы.
- 7. Техническая документация фирмы «I.S.A. S.r.l.», Италия.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- «выполнении работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям».

Изготовитель

Фирма «I.S.A. S.r.l.», Италия.

Адрес: Via Prati Bassi, 22, 21020 Taino VA - Italy. Тел.: +39 0331 956081 Факс: +39 0331 957091

Web-сайт: http://www.isatest.com

Заявитель

ООО «Энергоскан», г. Екатеринбург.

Адрес: 620062, г. Екатеринбург, ул. Первомайская, д. 77, оф. 305.

Представительство: 129515, г. Москва, ул. Академика Королева, д. 13, оф. 841.

Тел./Факс: +7 (343) 206 85 06; +7 (495) 268 02 90

Web-сайт: http://www.energoskan.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46 Тел./факс: (495)437-55-77 / 437-56-66;

E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в

целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

М.п. « » 2014 г.