ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Дефектоскопы ультразвуковые портативные Phasor XS

Назначение средства измерений

Дефектоскопы ультразвуковые портативные Phasor XS (далее по тексту - дефектоскопы) предназначены для измерения толщины изделий, координат дефектов и амплитуд сигналов от них, оценки относительных размеров дефектов в сварных соединениях и основном металле трубопроводов, сосудов давления, котлов, транспортных и мостовых конструкций и других объектов.

Описание средства измерений

Принцип действия дефектоскопов основан на возбуждении ультразвуковых колебаний (УЗК) в материале контролируемого объекта и приеме ультразвуковых колебаний, отраженных от дефектов и границ материалов.

Ультразвуковая волна, генерируемая преобразователем дефектоскопа, проникает в объект контроля, распространяется в нем, отражается от несплошностей или донной поверхности объекта контроля, принимается преобразователем дефектоскопа и преобразовывается в электрический сигнал. Принятый сигнал регистрируется и обрабатывается процессором электронного блока. На дисплее электронного блока дефектоскопа отображаются параметры обработанного сигнала, координаты дефекта или значение толщины.

Дефектоскопы выполнены в виде малогабаритного электронного блока с дисплеем и клавиатурой. К электронному блоку посредством кабеля подсоединяется стандартный ультразвуковой преобразователь или преобразователь на фазированной решетке. Фотография общего вида дефектоскопов приведена на рисунке 1.

Рисунок 1 – Общий вид дефектоскопов

В дефектоскопах предусмотрена возможность запоминания изображений экрана электронного блока и параметров настройки, работа с принтером и компьютером.

В зависимости от комплектации поставки дефектоскопы могут работать в разных режимах. Доступные режимы отображаются на дисплее при включении электронного блока дефектоскопа в строке «Configuration:».

Режим CV – режим ультразвукового дефектоскопа общего назначения с отображением принятых сигналов в виде А-скана. В этом режиме к электронному блоку подключаются стандартные пьезоэлектрические преобразователи. Режим доступен по умолчанию.

В режимах 16/16, 16/64, DM – предусмотрена возможность подключения преобразователей с фазированными решетками (ФР).

В режиме 16/16 при подключении любого преобразователя с ФР будут применяться только первые 16 элементов ФР. В режиме 16/64 будут применяться 64 элемента ФР. В любой момент времени будут активны 16 элементов. Так же в режиме 16/64 предусмотрена возможность подключения датчика положения.

Режим DM предназначен для работы с прямым раздельно-совмещенным преобразователем с фазированной решеткой с 32-мя элементами.

Дефектоскопы применяются при осуществлении контроля и диагностики объектов энергетики, транспорта, нефтегазовых и нефтеперерабатывающих комплексов, и других объектов различных секторов экономики.

Программное обеспечение

На электронный блок дефектоскопов устанавливается внутреннее программное обеспечение (ПО) «Phasor XS». ПО выполняет следующие основные функции:

- управление аппаратными ресурсами;
- тестирование и контроль аппаратного обеспечения;
- графическое отображения сигналов на экране дефектоскопа;
- расчет и отображения результатов в виде пересчетных значений по установленным параметрам;
- графическое отображения кривых типа АРД (АРК), ВРЧ и т.д. в соответствии с установленными параметрами для оценки результатов по международным стандартам и нормам.

Идентификационные признаки ΠO дефектоскопов соответствуют данным, приведенным в таблице 1.

Таблица 1

Идентификационное наименование ПО	Номер версии (идентификационны й номер) ПО	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора ПО
Phasor XS	2.72.BLD03 и выше	-	-

ПО прошивается в память прибора при изготовлении. Доступ к файловой системе имеют исключительно сервисные инженеры фирмы-изготовителя.

Защита программного обеспечения дефектоскопов от непреднамеренных преднамеренных изменений соответствует уровню А.

Метрологические и технические характеристики Таблица 2

Таблица 2	_
Наименование характеристики	Значение
Режим ультразвукового дефектоскопа общего назначе	
Диапазон установки амплитуды зондирующих импульсов, В	От 125 до 250
Допускаемое отклонение установки амплитуды зондирующих импульсов, %	± 10
Полоса пропускания по уровню -3 дБ, МГц, не менее	От 0,3 до 15
Диапазон установки усиления, дБ	От 0 до 110
Допускаемое отклонение установки усиления в диапазоне от 1 до 70 дБ, дБ	$\pm (0.3 + 0.01 \cdot N),$ где N – усиление,
	установленное на дефектоскопе, дБ
Пределы допускаемой абсолютной погрешности измерения амплитуды сигнала, дБ	± 0,5
Диапазон измерения временных интервалов для продольной звуковой волны по стали, мкс, не менее	От 0,1 до 4500
Пределы допускаемой абсолютной погрешности измерения временных интервалов, мкс	± 0,1
Диапазон установки задержки дисплея, мкс	От 0 до 3500
Диапазон регулировки скорости звука, м/с	От 1000 до 16000
Диапазон показаний глубины залегания дефектов или толщины изделий при скорости продольной волны 5900 м/с, мм, не менее	От 1 до 12500
Пределы допускаемой абсолютной погрешности измерения глубины залегания дефектов или толщины изделий в диапазоне от 2 до 2000 мм, мм	$\pm (1,0+0,01\cdot H),$ где $H-$ измеряемая глубина или толщина, мм
Режимы 16/16, 16/64	
Диапазон показаний глубины залегания дефектов или толщины изделий при скорости продольной волны 5900 м/с, мм, не менее	От 1 до 1800
Пределы допускаемой абсолютной погрешности измерения глубины залегания дефектов или толщины изделий в диапазоне от 1 до 50 мм, мм	$\pm (1,0+0,01\cdot H),$ где $H-$ измеряемая глубина или толщина, мм
Режим DM	
Диапазон показаний координат дефектов или толщины изделий при скорости продольной волны 5900 м/с, мм, не менее	От 0,7 до 1800
Пределы допускаемой абсолютной погрешности измерения глубины залегания дефектов или толщины изделий в диапазоне от 0,7 до 50 мм, мм	$\pm (1,0+0,01\cdot H),$ где $H-$ измеряемая глубина или толщина, мм
Технические характеристики	
Габаритные размеры электронного блока, мм, не более	282 x 171 x 159
Масса электронного блока с аккумулятором, кг, не более	3,8
Питание: - от ионно-литиевой аккумуляторной батареи с емкостью, А/ч	9
- от сети переменного тока с напряжением, В	от 85 до 260

Условия эксплуатации: - температура окружающего воздуха, °С	От минус 10 до плюс 50 по 95 (без	
- относительная влажность воздуха при температуре +25°C, %,	до 95 (без конденсации)	

Знак утверждения типа

Знак утверждения типа наносится на титульный лист руководства по эксплуатации типографским способом и на заднюю панель дефектоскопа способом наклеивания этикетки.

Комплектность средства измерений

Таблица 3

$N_{\underline{0}}$	Наименование	Кол-во
1	Электронный блок дефектоскопа	
2	Блок питания с сетевым кабелем	1 шт.
3	Кейс	1 шт.
4	Ультразвуковые преобразователи типа BS, MBS, KG, KN, KK, GN, GKB, GK, BF, MBF, RHP, GMN, DFR, K-PEN, SEB, MSEB, WB, WK, SWB, SWK, ADP, FDU, SWS, AWS, MWB, MWK, MSW-QC, MSWS, VS, VRY, VSY производства GE Sensing & Inspection Technologies GmbH	*
5	Преобразователи с фазированными решетками типа L8U84, L8U96, EUN75, L99HK, L99KO, L99LQ, L99JM производства GE Sensing & Inspection Technologies GmbH	*
6	Руководство по эксплуатации	1 экз.
7	Методика поверки	1 экз.

^{*} Тип и количество в соответствии с заказом потребителя

Поверка

осуществляется по документу МП 49.Д4-13 «ГСИ. Дефектоскопы ультразвуковые портативные Phasor XS. Методика поверки» утвержденному ГЦИ СИ ФГУП «ВНИИОФИ» в июне 2013 г.

Основные средства поверки:

- 1. Генератор сигналов сложной формы AFG 3022. Синусоидальный сигнал от 1 к Γ ц до 20М Γ ц, диапазон напряжений от 10 мB до 10 B, погрешность \pm (1 % от величины + 1 мB), амплитудная неравномерность (до 5 М Γ ц) \pm 0,15 дБ, (от 5 до 20 М Γ ц) \pm 0,3 дБ;
- 2. Осциллограф цифровой Tektronix TDS-2012B. Диапазон измеряемых размахов напряжений импульсных радиосигналов от 10 мB до 10 В. Пределы относительной погрешности измерения напряжений $\pm 3 \text{ %}$;
- 3. Контрольные образцы №2 и №3 из комплекта КОУ-2. Контрольный образец №2: высота 59 мм, боковые цилиндрические отверстия диаметром 2 и 6 мм. Контрольный образец №3: радиус цилиндрической поверхности 55 мм.

Сведения о методиках (методах) измерений

Сведения о методиках (методах) измерений приведены в руководстве по эксплуатации «Дефектоскопы ультразвуковые портативные Phasor XS. Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к дефектоскопам ультразвуковым портативным Phasor XS

- 1. ГОСТ 14782-86. Контроль неразрушающий. Соединения сварные. Методы ультразвуковые
 - 2. Техническая документация GE Inspection Technologies, США.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

При осуществлении производственного контроля за соблюдением установленных законодательством Российской Федерации требований промышленной безопасности к эксплуатации опасного производственного объекта;

при выполнении работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

GE Inspection Technologies, CIIIA.

Адрес: 50 Industrial Park Road, Lewistown, PA 17044, U.S.A.

Телефон: +1 866 243 2638, +1 717 242 0327

Сайт:GEInspectionTechnologies.com

Заявитель

ООО «ДжиИ Рус»

Адрес: Россия, 123317, г. Москва, Пресненская наб., 10, 11 этаж.

Телефон/факс: +7 495 937 1111 / 12

Сайт: www.ge-mcs.com

Испытательный центр

Государственный центр испытаний средств измерений федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт оптикофизических измерений» (ГЦИ СИ ФГУП "ВНИИОФИ")

Адрес: 119361, г. Москва, ул. Озерная, 46.

Телефон: (495) 437-56-33, факс: (495) 437-31-47

E-mail: vniiofi@vniiofi.ru

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИОФИ», по проведению испытаний средств измерений в целях утверждения типа № 30003-08 от 30.12.2008 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

М.п.			Ф.В. Булыгин
	«	»_	2013 г.