ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Дозиметры-радиометры МКС-РМ1403

Назначение средства измерений

Дозиметры-радиометры МКС-РМ1403 (далее – дозиметры) предназначены для измерений мощности амбиентного эквивалента дозы \dot{H} *(10) (далее – МЭД) рентгеновского и гамма-излучений (далее – фотонного излучения), нейтронного излучения, амбиентного эквивалента дозы H *(10) (далее – ЭД) фотонного излучения, накопления и хранения сцинтилляционных спектров гамма- излучения, идентификации радионуклидного состава вещества, измерения плотности потока альфа- и бета- излучений, а также для поиска, обнаружения и локализации радиоактивных материалов.

Описание средства измерений

Принцип действия дозиметра в режиме измерения основан на подсчете числа импульсов, поступающих с выходов детекторов, и вычислении МЭД или ЭД при измерении фотонного или нейтронного излучения, плотности потока при измерении альфа-, бета- излучений.

В режиме поиска дозиметр осуществляет сравнение числа импульсов, поступающих с выходов блоков детектирования, с пороговым значением, рассчитанным на основе измерения текущего радиационного фона (полученного при калибровке дозиметра) и установленных коэффициентов.

Дозиметр состоит из блока детектирования и обработки информации БДОИ-РМ1403 (далее по тексту – БДОИ) и внешних блоков детектирования:

- блока детектирования гамма- излучения БДГ1-РМ1403 (далее БДГ1);
- блока детектирования гамма- излучения БДГ2-РМ1403 (далее БДГ2);
- блока детектирования нейтронного излучения БДН-РМ1403 (далее БДН);
- блока детектирования альфа-бета- излучений БДАБ-РМ1403 (далее БДАБ).

Внешние блоки детектирования выполнены в виде отдельных, конструктивно законченных блоков, и подключаются к БДОИ или персональному компьютеру (ПК) с помощью кабеля.

Функции, выполняемые БДОИ и внешними блоками детектирования при подключении их к БДОИ или ПК, приведены в таблице 1.

Таблица 1

Наименование выполняемой	БДОИ	Внешние блоки детектирования			кин
функции		БДГ1	БДГ2	БДН	БДАБ
Регистрация фотонного излучения:					
- измерение МЭД;	+	+	+	-	-
- измерение ЭД;	-	-	+	-	-
- поиск источников фотонного из-					
лучения;	+	+	+	-	-
- накопление сцинтилляционных					
спектров гамма- излучения;	+	+	-	-	-
- идентификация радионуклидного					
состава вещества.	+	+	_	_	_

Наименование выполняемой	БДОИ	Внешние блоки детектирования			ния
функции		БДГ1	БДГ2	БДН	БДАБ
Регистрация нейтронного излуче-					
ния:					
- измерение МЭД;	-	-	-	+	-
- поиск источников нейтронного					
излучения.	_	_	-	+	-
Регистрация альфа- бета- излуче-					
ний:					
- измерение плотности потока	-	-	-	-	+
альфа- бета излучений;					
- поиск источников альфа- бета-	_	-	-	_	+
излучений.					

Внешние блоки детектирования, в зависимости от назначения, осуществляют измерение ЭД фотонного излучения, МЭД фотонного или нейтронного излучения, плотности потока альфа- или бета- излучений и пересылают измеренные значения в БДОИ или ПК.

БДОИ или ПК осуществляют программирование внешних блоков детектирования и вывод информации на дисплей. В состав БДОИ входит встроенный карманный персональный компьютер (КПК), сцинтилляционный блок гамма- детектора, блоки GPRS, GPS и Wi-Fi.

Питание КПК, блоков GPRS, GPS и Wi-Fi входящих в состав БДОИ, осуществляется от встроенной аккумуляторной батареи постоянного тока напряжением 3,6 (-0,1 +0,7) В. Питание блока детектирования, входящего в состав БДОИ, и внешних подключаемых блоков детектирования осуществляется от дополнительной встроенной аккумуляторной батареи постоянного тока напряжением 3,6 (-0,1 +0,7) В.

Внешний вид дозиметра и места пломбирования БДОИ и внешних блоков детектирования указаны на рисунках 1 и 2.

Рисунок 1 – Внешний вид дозиметра

- 1 Блок детектирования и обработки информации БДОИ-РМ1403;
- 2 Блок детектирования альфа- бета- излучений БДАБ-РМ1403;
- 3 Блок детектирования нейтронного излучения БДН-РМ1403;
- 4 Блок детектирования гамма- излучения БДГ2-РМ1403;
- 5 Блок детектирования гамма- излучения БДГ1-РМ1403;

- 6 Кабель для подключения зарядного устройства (для БДОИ);
- 7 Зарядное устройство для заряда аккумуляторных батарей БДОИ;
- 8 Кабель № 1 для подключения БДОИ к ПК;
- **9** Кабель № 2 (кабель № 2 1,5 м; кабель № 2-1 25 м; кабель № 2-2 0,45 м) для подключения внешних блоков детектирования к БДОИ;
 - 10 Кабель № 3 для подключения внешних блоков детектирования к ПК;
 - 11 USB Flash карта;
 - 12 Переходник USB;
 - 13 Удлинитель телескопический;
 - 14 Модуль развязки;
 - 15 Наконечник;
 - 16 Кронштейн;
 - **17** Рукоятка;
 - **18** Хомут БДГ1;
 - **19** Хомут БДН;
 - **20** Хомут БДГ2.

Рисунок 2 – Места пломбирования БДОИ и внешних блоков детектирования

Программное обеспечение

Метрологически значимым в дозиметре является программное обеспечение (ПО): ТИГР.00048.00.02.1-03, ТИГР. 00046.00.02.7-01, ТИГР. 00046.00.02.3-04, ТИГР.00046.00.02.6-04, ТИГР.00046.00.02.5-03. ПО является встроенным, метрологически значимая часть ПО и измеренные данные не требуют специальных средств защиты от преднамеренных и непреднамеренных изменений.

Идентификационные данные ПО приведены в таблице 2.

T-6	1
т аолина	Z

Наименование ПО	Идентификационное	Номер вер-	Цифровой	Алгоритм
	наименование ПО	сии (иден-	идентифика-	вычисления
		тификаци-	тор ПО (кон-	цифрового
		онный но-	трольная	идентифика-
		мер) ПО	сумма испол-	тора ПО
			няемого кода)	
Программа микро-	ТИГР.00048.00.02.1-03	v 2.20	0xc599	CRC 16
процессорная				(0x11021)
БДОИ-РМ1403 (де-				
тектор гамма 202)				

Наименование ПО	Идентификационное наименование ПО	Номер версии (идентификационный номер) ПО	Цифровой идентифика-тор ПО (контрольная сумма испол-	Алгоритм вычисления цифрового идентифика- тора ПО
77	THED 00045 00 02 7 01	1.0	няемого кода)	CD C 1.6
Программа микропроцессорная БДГ1-РМ1403	ТИГР.00046.00.02.7-01	v 1.0	0x7BF2	CRC 16 (0x11021)
Программа микропроцессорная БДГ2-РМ1403	ТИГР.00046.00.02.3-04	v 1.9	0xC7DE	CRC 16 (0x11021)
Программа микропроцессорная БДН-РМ1403	ТИГР.00046.00.02.6-04	v 1.9	0xEED0	CRC 16 (0x11021)
Программа микропроцессорная БДАБ-РМ1403	ТИГР.00046.00.02.5-03	v 3.0	0xAD67	CRC 16 (0x11021)

Защита ΠO от непреднамеренных и преднамеренных изменений соответствует уровню «А» по МИ 3286-2010.

Метрологические и технические характеристики

Метрологические и технические характеристики дозиметра приведены в таблице 3. Таблица 3

Таолица 3	
Наименование параметра	Значение
Диапазон измерений МЭД фотонного излучения:	
- БДОИ, мкЗв/ч	от 0,1 до 100,0
- БДГ1, мкЗв/ч	от 0,1 до 100,0
- БДГ2, Зв/ч	от 1 ⁻ 10 ⁻⁷ до 10,0
Пределы допускаемой основной относительной погрешности из-	01110 де 10,0
мерений МЭД фотонного излучения, %:	
- БДОИ	\pm 30 1
- вдон	± 50
- БДГ1, БДГ2	±(20+K/ 1 \),
	•
	где H – значение МЭД в мкЗв/ч;
Пускован установания и может оне выполня и может МОП фотом	К – коэффициент, равный 2,0 мкЗв/ч
Диапазон установки и контроля порогового уровня МЭД фотон-	
ного излучения:	0.1 100.0
- БДОИ, мк3в/ч	от 0,1 до 100,0
- блока детектирования БДГ1, мкЗв/ч	от 0,1 до 100,0
- блока детектирования БДГ2, Зв/ч	от 1 ⁻ 10 ⁻⁷ до 10,0
Дискретность установки порогового уровня МЭД фотонного из-	единица младшего
лучения БДОИ, БДГ1, БДГ2	индицируемого разряда
Диапазон измерений ЭД фотонного излучения БДГ2, мЗв	от 0,01 до 9999
Пределы допускаемой основной относительной погрешности из-	
мерений ЭД фотонного излучения БДГ2, %	± 10

¹ Погрешность измерений определена по линии ¹³⁷Cs в коллимированном излучении. Для других энергий фотонного излучения погрешность измерений с БДОИ не нормируется.

продолжение таолицы 3	
Наименование параметра	Значение
Диапазон установки порогового уровня ЭД фотонного излучения БДГ2, мЗв	от 0,01 до 9999
Дискретность установки порогового уровня фотонного излучения ЭД БДГ2	единица младшего индицируе- мого разряда
Диапазон измерений плотности потока альфа-, бета- излучений (ϕ) БДАБ, мин ⁻¹ ·см ⁻² :	
- α- излучение;	от 1,0 до 5⋅10 ⁵
- β- излучение	от 10 до 10^6
Пределы допускаемой основной относительной погрешности измерений плотности потока БДАБ, %:	
- плотности потока α- излучения;	$\pm (20 + A/\varphi),$
- плотности потока β- излучения	где ϕ – плотность потока альфа-излучения, мин $^{-1}$ ·см $^{-2}$, A – коэффициент, равный 10 мин $^{-1}$ ·см $^{-2}$ $\pm (20 + A/\phi)$, где ϕ – плотность потока бетаизлучения, мин $^{-1}$ ·см $^{-2}$, A – коэффициент, равный 100 мин $^{-1}$ ·см $^{-2}$
Диапазон измерений МЭД нейтронного излучения (Рu-α-Ве в	от 1,0 до 5000
коллимированном излучении) БДН, мкЗв/ч	,
Пределы допускаемой основной относительной погрешности	$\pm (30 + K/14),$
измерений МЭД нейтронного излучения (Pu-α-Ве в коллимированном излучении) БДН, %	где Н – измеренная МЭД нейтронного излучения, мкЗв/ч; К – коэффициент, равный 10,0 мкЗв/ч
Диапазон энергий регистрируемого фотонного излучения, МэВ:	
- БДОИ;	от 0,05 до 3,0
- БДГ1, БДГ2;	от 0,03 до 3,0
Энергетическая зависимость в режиме измерения МЭД относительно энергии 0,662 МэВ (¹³⁷ Cs) регистрируемого фотонного излучения, %:	
- БДГ1;	± 20
- БДГ2 в диапазоне энергий:	
от 30 до 48 кэВ;	минус 40
от 48 кэВ до 3,0 МэВ	± 25
Диапазон энергий регистрируемого нейтронного излучения блока детектирования БДН, МэВ	от 2,5 ⁻ 10 ⁻⁸ до 14
Энергетическая зависимость и диапазон граничных энергий при	не отличается от типовой зави-
регистрации β- излучения БДАБ	симости более чем на ±30 % в
	диапазоне граничных энергий от 0,15 до 3,5 МэВ
Чувствительность к фотонному излучению по ¹³⁷ Сs, не менее:	
- БДОИ, (имп./с)/(мкЗв/ч);	100
- БДГ1, (имп./с)/(мкЗв/ч)	900

Наименование параметра	Значение
Чувствительность блока детектирования БДН к нейтронному	
излучению, (имп./с)/(мкЗв/ч), не менее:	
- для Ри-α-Ве;	0,3
- для тепловых нейтронов	1,2
Чувствительность блока детектирования БДАБ к альфа- и бета-	,
излучению, мин ⁻¹ · см ⁻² , не менее:	
- к альфа- излучению по ²³⁹ Pu;	3,0
- к бета- излучению по $^{90}{ m Sr}^{-90}{ m Y}$	2,0
Относительное энергетическое разрешение при регистрации	
сцинтилляционных спектров для энергии гамма- излучения	
0,662 МэВ радионуклида ¹³⁷ Сs, %, не более:	
- БДОИ;	7,5
- БДГ1	8,5
Пределы допускаемой относительной погрешности характери-	
стики преобразования (интегральная нелинейность) в диапазо-	
не измеряемых энергий, %:	
- БДОИ;	1,0
- БДГ1	0,5
Пределы допускаемой дополнительной относительной погрешно	сти измерений:
- при изменении температуры окружающего воздуха от нормаль-	
ной до минус 20 °C и от нормальной до плюс 50 °C	± 10 %
- при относительной влажности окружающего воздуха 95 % при 35 °C	± 10 %
- при изменении напряжения питания от номинального до	
крайних значений:	
- БДГ1, БДН	± 10 %
- БДГ2, БДАБ	± 5 %
- при воздействии магнитного поля напряженностью 400 А/м	± 10 %
- при воздействии радиочастотных электромагнитных полей	± 10 %
Номинальное напряжение питания, В:	
- БДОИ;	3,6
- БДГ1, БДГ2, БДН, БДАБ	3,6
Время непрерывной работы от заряженных аккумуляторных	
батарей (до появления информации на ЖКИ о разряде) в нор-	
мальных условиях эксплуатации без использования GPRS и Wi-	
Fi,ч, не менее	8
Габаритные размеры, мм, не более:	00 100 55
- БДОИ (длина х ширина х высота)	82 x 180 x 61
- БДГ1 (диаметр х длина)	290 x 70
- БДГ2 (диаметр х длина)	162 x 40
- БДН (диаметр х длина)	230 x 60
- БДАБ (длина х ширина х высота)	71 x 45 x 130
Масса составных частей дозиметра, кг, не более:	0.75
- БДОИ; Б ПГ1:	0,75 1,56
- БДГ1; - БДГ2;	1,56 0,11
- БДН 2, - БДН;	0,65
- БДП, - БДАБ	0,48

Наименование параметра	Значение
Масса дозиметра в полном комплекте поставки в упаковке, кг,	8,5
не более	
Средний срок службы, лет, не менее	10
Наработка на отказ, ч, не менее	20000
Среднее время восстановления, мин, не более	60
Рабочие условия эксплуатации дозиметра:	
- температура окружающего воздуха, °С	от минус 20 до 50
- относительная влажность воздуха при температуре воздуха	
35 °С, %, не более	95
- атмосферное давление, кПа	от 84 до 106,7

Знак утверждения типа

Знак утверждения типа наносится на титульный лист паспорта ТИГР.412118.046 ПС типографским способом.

Комплектность средства измерений

В комплект поставки дозиметров входят изделия и документы, указанные в таблице 4. Таблица 4

1 аолица 4			
Наименование	Обозначение	Кол-во	Примечание
1. Дозиметр-радиометр	ТИГР.412118.046	1	Количество и тип блоков де-
МКС-РМ1403 в составе:			тектирования и принадлежно-
			стей, входящих в комплект по-
			ставки, указывается в карте за-
			каза согласно приложению.
1.1 Блок детектирования и	ТИГР.412152.004	1	По требованию потребителя
обработки информации			поставляется отдельно или
БДОИ-РМ1403			вместе с внешними блоками
			детектирования
1.2 Блок детектирования	ТИГР.418258.191	1	По требованию потребителя
гамма- излучения БДГ1-			поставляется отдельно или
PM1403			вместе с БДОИ-РМ1403
1.3 Блок детектирования	ТИГР.418266.001	1	По требованию потребителя
гамма- излучения БДГ2-			поставляется отдельно или
PM1403			вместе с БДОИ-РМ1403
1.4 Блок детектирования	ТИГР.418267.001	1	По требованию потребителя
нейтронного излучения			поставляется отдельно или
БДН-РМ1403	THE 4400 TO 404		вместе с БДОИ-РМ1403
1.5 Блок детектирования	ТИГР.418258.194	1	По требованию потребителя
альфа- бета- излучений			поставляется отдельно или
БДАБ-РМ1403	THED 412110 046 HG		вместе с БДОИ-РМ1403
2. Паспорт дозиметра- ра-	ТИГР.412118.046 ПС	1	Поставляется совместно с
диометра МКС-РМ1403			БДОИ-РМ1403 и блоками де-
2.16	THER 205 (54 0 40		тектирования
3. Комплект принадлеж-	ТИГР.305654.040	1	Состав комплекта принадлеж-
ностей			ностей указывается в карте за-
4.37	THED 205 (41 04)	4	каза.
4. Упаковка	ТИГР.305641.046	1	
5. Методика поверки	МРБ МП.2243-2012	1	

Поверка

осуществляется по документу МРБ МП.2243-2012 «Дозиметр-радиометр МКС-РМ1403. Методика поверки», утвержденному директором БелГИМ 12 июня 2012 г.

Основные средства поверки:

- государственный первичный эталон ГЭТ 38-2011, диапазон от $6.0^{\circ}10^{\circ3}$ до 1.0° 3в/мин, пределы допускаемой относительной погрешности $\pm 1.5^{\circ}$ (P=0.99);
- установка поверочная дозиметрическая гамма-излучения УПГД-2М-Д (Рег. № 32425-06), диапазон МЭД от $5 \cdot 10^{-7}$ до $5 \cdot 10^{-2}$ Зв/ч, пределы допускаемой относительной погрешности измерений \pm 5 % (P=0,95);
- установка поверочная нейтронного излучения УКПН-2М-Д (Рег. № 31390-06), диапазон МЭД от 20 до 800 мкЗв/ч пределы допускаемой относительной погрешности ± 5 %;
- вторичный эталон единиц мощности поглощенной и эквивалентной доз нейтронного излучения ВЭТ 117-1-82, диапазон значений мощности эквивалента дозы от $5\cdot10^{-10}$ Зв/с до $1\cdot10^{-5}$ Зв/с, пределы допускаемой относительной погрешности \pm 6 %;
- источники радионуклидные фотонного излучения метрологического назначения закрытые типа ИМН (Рег. № 44591-10), активность от 10^2 до 10^4 Бк, пределы допускаемой относительной погрешности $\pm 6\%$;
- источники радионуклидные бета-излучения метрологического назначения закрытые типа ИМН, активность от 10^2 до 10^4 Бк, пределы допускаемой относительной погрешности $\pm 6 \%$;
- источники радионуклидные альфа-излучения метрологического назначения закрытые типа ИМН, активность от 10^2 до 10^4 Бк, пределы допускаемой относительной погрешности \pm 6 %.

Сведения о методиках (методах) измерений

Блок детектирования и обработки информации БДОИ-РМ1403. Руководство по эксплуатации ТИГР.412152.004РЭ.

Блок детектирования гамма- излучения БДГ1-РМ1403. Руководство по эксплуатации ТИГР.418258.191РЭ.

Блок детектирования гамма- излучения БДГ2-РМ1403 Руководство по эксплуатации ТИГР.418266.001РЭ.

Блок детектирования нейтронного излучения БДН-РМ1403. Руководство по эксплуатации ТИГР.418267.001РЭ.

Блок детектирования альфа-бета- излучений БДАБ-РМ1403. Руководство по эксплуатации ТИГР.418258.194РЭ.

Нормативные и технические документы, устанавливающие требования к дозиметрамрадиометрам МКС-РМ1403

ГОСТ 8.070-96. "Государственная поверочная схема для средств измерений поглощенной и эквивалентной доз и мощности поглощенной и эквивалентной доз фотонного и электронного излучения".

ГОСТ 17225-85 "Радиометры загрязненности поверхностей альфа- и бета- активными веществами. Технические требования".

ГОСТ 27451-87. "Средства измерений ионизирующих излучений. Общие технические условия".

ГОСТ 26874-86 "Спектрометры энергий ионизирующих излучений. Методы измерения основных параметров".

Дозиметр-радиометр МКС-РМ1403 Технические условия. ТУ ВУ 100345122.060-2012.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- осуществление деятельности в области охраны окружающей среды;
- осуществление деятельности по обеспечению безопасности при чрезвычайных ситуациях;
- выполнение работ по обеспечению безопасных условий и охраны труда;

- осуществление производственного контроля за соблюдением установленных законодательством Российской Федерации требований промышленной безопасности к эксплуатации опасного производственного объекта.

Изготовитель

Общество с ограниченной ответственностью "Полимастер" (ООО "Полимастер") Юридический адрес: Республика Беларусь, 220040 г. Минск, ул. М. Богдановича, 112. Почтовый адрес: Республика Беларусь, 220141 г. Минск, ул. Ф. Скорины. 51. Тел +375 17 268 68 19, факс +375 17 260 23 56

Экспертиза проведена

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений» (ФГУП «ВНИИФТРИ»).

Юридический адрес: 141570, Московская обл., Солнечногорский р-н, городское поселение Менделеево, Главный лабораторный корпус.

Почтовый адрес: 141570, Московская обл., Солнечногорский р-н, п/о Менделеево.

Тел/факс: (495) 526-63-00. E-mail: office@vniiftri.ru

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

		Ф.В. Булыгин
М.п.	« <u></u> »	2013 г