ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Весы вагонные МОСТ-Вагон

Назначение средства измерений

Весы вагонные МОСТ-Вагон это весы для статического взвешивания или взвешивания в движении или для статического взвешивания и взвешивания в движении, предназначенные для взвешивания в статике четырёх- шести-, восьмиосных железнодорожных вагонов и двух-, четырёхосных вагонеток как с их расцепкой, так и без расцепки, а также и/или взвешивания в движении четырёх-, шести-, восьмиосных железнодорожных вагонов и двух-, четырёхосных вагонеток в режиме поосного, потележечного или повагонного взвешивания с документированной регистрацией массы каждого вагона и массы состава в целом.

Описание средства измерений

Принцип действия весов вагонных МОСТ-Вагон (далее — весы): преобразование деформации упругих элементов тензорезисторных датчиков, возникающей под действием силы тяжести взвешиваемого груза, в электрический сигнал, изменяющийся пропорционально массе взвешиваемого груза.

Весы состоят из грузоприёмного устройства (ГПУ), одного или двух индикаторов, электрических соединительных кабелей и, при необходимости, компьютера с программным обеспечением (ПО) «МОСТ-Вагон». ГПУ весов представляет собой один или несколько весовых модулей, в которых каждая грузоприёмная платформа установлена на двух, четырёх или шести весоизмерительных датчиках. Датчики, в свою очередь, смонтированы на опорной части ГПУ. ГПУ может устанавливаться как на фундаментное, так и на утрамбованное щебёночное основание.

Нагрузка от находящегося на ГПУ колёсных пар вагона/вагонетки передаётся через грузоприёмную платформу на весоизмерительные тензорезисторные датчики, которые вырабатывают электрический сигнал, суммируемый в клеммных коробках. Данный сигнал, пропорциональный нагрузке на платформы ГПУ, передаётся в индикатор, где обрабатывается в соответствии с заданным алгоритмом, с последующей выдачей результата взвешивания на цифровое табло индикатора. Далее сигнал может передаваться в ПК с установленным специальным ПО «ВЕСЫ-Вагон» для целей его более детальной обработки, хранения информации в базах данных и формирования отчётных форм.

В весах используются весоизмерительные тензорезисторные датчики типа Compression модификации ASC фирмы Vishay, Израиль (Госреестр №37066-09) или типа Column модификаций ВМ14G/ВМ14К фирмы Zemic, КНР (Госреестр №29585-07) и индикаторы типа 520/720і фирмы Rice Lake WS, США или типа VT200/VT400 фирмы Vishay, Израиль. Индикаторы находятся в помещении.

Весы выпускаются в нескольких модификациях и имеют следующие обозначения:

МОСТ-Вагон [1][2]-[3]-[4]-[5], где:

МОСТ-Вагон – тип весов;

- [1] режим взвешивания: С только статическое взвешивание; Д только взвешивание в движении; СД статическое взвешивание и взвешивание в движении;
- [2] 25; 50; 100; 150; 200: Мах, т максимальная нагрузка для весов с режимом взвешивания С и СД;
- 25, 50, 200: НПВ,т -наибольший предел взвешивания для весов с режимом взвешивания Д; [3] режимы взвешивания в движении: Д/О поосный; Д/Т потележечный; Д/В повагонный:
- [4] (Д1, Д2, Д3) тип весоизмерительных датчиков: Д1-ASC; Д2-BM14G; Д3-BM14K;
- [5] (П1, П2, П3, П4) тип индикатора: П1-520; П2-720i; П3-VT200; П4-VT400;

Модификации весов отличаются максимальными нагрузками для статического взвешивания, наибольшими пределами взвешивания в движении, режимами взвешивания в движении, типом весоизмерительных датчиков и индикаторов, длиной взвешивающей платформы, массой ГПУ и некоторыми другими характеристиками, параметры которых приведены в таблицах 2 - 4.

Общий вид весов вагонных модификации МОСТ-Вагон СД150-Д/Т-Д2-П1 представлен на рисунке 1. Общий вид индикаторов представлен на рисунках 2.

Рис.1. Весы МОСТ-Вагон СД150-Д/Т- Д2-П1

Рис.2а. Индикатор 520

Рис.2c. Индикатор VT200

Рис.2d. Индикатор VT400

Программное обеспечение

В составе индикаторов имеется встроенное программное обеспечение (ПО), состоящее из программных блоков, которые поименованы в Руководстве по эксплуатации индикаторов: настройка параметров, калибровка, поверка и т.д. Основными и вспомогательными функциями ПО являются: калибровка, контроль элементов ГПУ весов и т.д.

Защита ПО обеспечивается системой разграничения доступа к различным подсистемам ПО: режим программирования и режим измерений (взвешивания).

В целях предотвращения несанкционированных вмешательств и доступа в ПО индикаторов выполняется следующие ограничительные функции:

- 1) Пломбирование индикаторов после проведения поверки весов. Место нанесения пломбы на индикаторы VT-200, VT-400 и 520, 720i просверленные головки винтов на задней крышке индикаторов. Схемы пломбирования индикаторов представлены на рисунке 3.
- 2) Пломбирование разъёма подключения датчиков.
- 3) Пароль доступа в режим калибровки.
- 4) Защита ПО «Весы-Вагон», установленного на ПК в весовой, от дешифровки конфигурационных файлов, самовольного изменения хранящейся информации и распространения конфигурационных файлов без ведома фирмы-разработчика реализована следующим образом. Файлы конфигурации «TenRO.cfg» создаются для каждого экземпляра весов индивидуально. Для шифрования используется ассиметричный метод. Закрытый ключ известен только разработчику и встроен в ПО «Админ» для шифрования и ПО «Весы-Вагон» для дешифрования. Открытый ключ генерируется в зависимости от определённых параметров, передаваемых в конфигурационном файле, и хранится в файле «TenRo.key», поставляемом вместе с конфигурационным файлом, и уникален для каждого экземпляра весов.

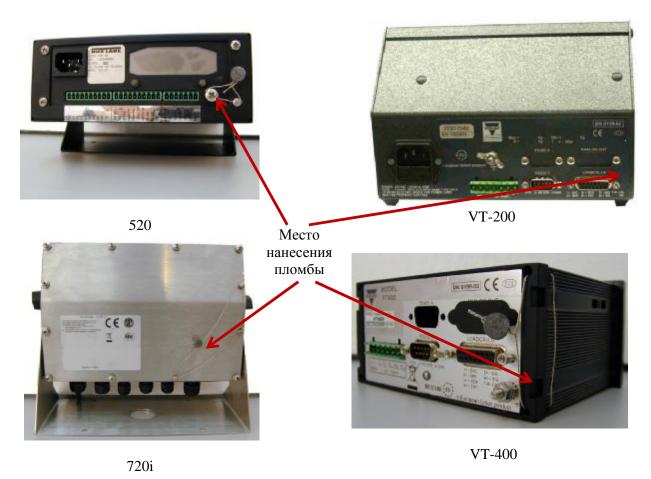


Рис. 3 Схема пломбирования индикаторов

Идентификационные данные ПО представлены в Таблице 1.

Таблина 1

таолица т				
Наименование ПО	Идентификацион- ное наименование ПО	Номер версии (идентификацион- ный номер ПО)	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора ПО
Встроенное ПО VT-200	VT200PAR.bin	150908	-	-
Встроенное ПО VT-400	VT400.bin	211104	-	-
Встроенное ПО RLWS-520	520.mot.hex	1.11	-	-
Встроенное ПО RLWS-720i	720.mot.hex	1.23	-	-
ПО Весы-Вагон	TenROW.exe.hex	2011.14.11.22	0xA4F1A4F0	CRC32

Защита ΠO от преднамеренных и непреднамеренных изменений соответствует уровню «А» по M M 3286-2010.

Метрологические и технические характеристики

При статическом взвешивании:

Класс точности по ГОСТ Р 53228-2008 (III) - средний

Максимальная нагрузка весов (Max), минимальная нагрузка весов (Min), действительная цена деления (d) / поверочное деление (e), е = d, число поверочных делений n, количество грузоприёмных платформ (ГПП) и пределы допускаемых погрешностей при увеличении или уменьшении нагрузки указаны в таблице 2.

Таблица 2

Max,	Min,	Поверочное деление е, кг	Число поверочных делений n	Количе- ство ГПП, шт.	Для нагрузки m , т	Пределы допускаемой погрешности при поверке, кг
25	0,2	10	2500	1	$0.2 \le m \le 5$ $5 < m \le 25$	± 5 ± 10
25	0,4	20	1250	1	$0.4 \le m \le 10$ $10 < m \le 25$	± 10 ± 20
50	0,4	20	2500	1	$0.4 \le m \le 10$ $10 < m \le 40$ $40 < m \le 50$	± 10 ± 20 ± 30
	1,0	50	1000	1	$ \begin{array}{r} 1,0 \le m \le 25 \\ 25 < m \le 50 \end{array} $	± 25 ± 50
100	1,0	50	2000	1; 2	$ \begin{array}{l} 1,0 \le m \le 25 \\ 25 < m \le 100 \end{array} $	± 25 ± 50
	2,0	100	1000	1, 2	$ \begin{array}{l} 2,0 \le m \le 50 \\ 50 < m \le 100 \end{array} $	± 50 ± 100
150	1,0	50	3000	1; 2; 3	$ 1,0 \le m \le 25 25 < m \le 100 100 < m \le 150 $	± 25 ± 50 ± 75
	2,0	100	1500		$ \begin{array}{rrr} 2,0 \le m \le 50 \\ 50 < m \le 150 \end{array} $	± 50 ± 100
200	2,0 100	2000	2; 3	$ \begin{array}{c} 2,0 \le m \le 50 \\ 50 < m \le 200 \end{array} $	± 50 ± 100	
	4,0	200	1000	2, 3	$4,0 \le m \le 100 \\ 100 < m \le 200$	± 100 ± 200

Пределы допускаемой погрешности в эксплуатации (у пользователя) равны удвоенному значению пределов допускаемых погрешностей при поверке.

Пределы допускаемой погрешности устройства установки на нуль ±0,25 е

При взвешивании в движении:

Класс точности по ГОСТ 30414-96:

при взвешивании вагона, вагонетки в составе без расцепки 1 при взвешивании состава из вагонов, вагонеток в целом 0,5 Скорость движения вагонов, вагонеток при взвешивании, км/ч от 5 до 15

Наибольший предел взвешивания (НПВ), наименьший предел взвешивания (НмПВ), дискретность отсчета (d), пределы допускаемых погрешностей при первичной поверке или

калибровке при взвешивании вагона, вагонетки в составе (Δ , δ) и состава в целом (Δ_c , δ_c) приведены в таблице 3.

Таблица 3

Таоли	іца 5			T	T	_			
Пределы взвешивания,			Диапазоны	Δ, δ	Диапазоны				
		А	d, взвешивания кг вагона,	для вагона, взвешивания		$\Delta_{ m c},\delta_{ m c}$			
T				вагонетки в	состава из «n»	для состава			
	KI			составе до 1000 т	вагонов,	для состава			
НПВ	ΗмПВ		вагонетки	(* с округлением)	вагонеток				
			от 0,1 т до	$\Delta = \pm 43,6$ κΓ	до n x 8,75т вкл.	$\Delta_{\rm c} = \pm ({\rm n} {\rm x} 21.8) {\rm K} \Gamma$			
			8,75 т вкл.	$(* \pm 50 \text{ кг})$		(при n > 10			
						принимается			
25	0,1	10	св.8,75 т	$\delta = \pm 0.5\%$ (ot		n = 10)			
				измеряемой	св. п х 8,75 т	$\delta_{\rm c} = \pm \ 0.25 \ \%$ (ot			
				массы)		измеряемой массы)			
			от 0,2 т до	$\Delta = \pm 87,4$ κΓ	до n x 17,5 т вкл.	$\Delta_{\rm c} = \pm ({\rm n} \times 43,7) \ {\rm K} \Gamma$			
			17,5 т вкл.	$(* \pm 100 \text{ кг})$		(при n > 10			
						принимается			
50	0,2	20	св. 17,5 т	$\delta = \pm 0.5\%$ (ot		n = 10)			
				измеряемой	св. п х 17,5 т	$\delta_{\rm c} = \pm 0.25 \%$ (от			
							массы)		измеряемой массы)
			от 1,0 т до	$\Delta = \pm 350 \text{ кг}$	до n x 70 т вкл.	$\Delta_{\rm c} = \pm ({\rm n} \times 175) {\rm K}\Gamma$			
			70 т вкл.	$(* \pm 400 \text{ kg})$		(при n > 10			
				()		принимается-			
200	1,0	100	св.70 т	$\delta = \pm 0.5\%$ (ot		n = 10			
	·			измеряемой	св. п х 70 т	$\delta_{\rm c} = \pm 0.25 \%$ (ot			
				массы)		измеряемой массы)			

Примечание — Значения пределов допускаемой погрешности для конкретного значения массы округляют до ближайшего большего значения, кратного дискретности весов.

Пределы допускаемой погрешности в эксплуатации соответствуют удвоенным значениям, приведённым в таблице 3 (до округления).

При первичной поверке не более чем 10% полученных значений погрешности весов при взвешивании вагона, вагонетки в составе, могут превысить пределы, приведённые в таблице 3, но не должны превышать пределы допускаемой погрешности в эксплуатации.

При взвешивании вагонов и вагонеток в составе без расцепки общей массой свыше 1000 т абсолютные значения пределов допускаемой погрешности при первичной поверке и в эксплуатации увеличивают на 200 кг на каждую дополнительную 1000 т общей массы состава. Общие характеристики при статическом взвешивании и взвешивании в движении Таблица 4

Габаритные размеры ГПУ без рельса, м (Длина X Ширина X Высота)	от 3,0 x 1,7 x 0,5 до 23,0 x 3,0 x 1,0
Масса ГПУ в сборе (без подгрузки бетоном), т	от 5 до 20
Потребляемая мощность, В-А, не более	200
Электрическое питание напряжением 220 В переменного тока частотой 50 Гц с отклонением:	- 15 + 10
напряжения, %частоты, Гц	± 1
Скорость проезда вагонов без взвешивания, км/ч	до 25
Направление движения при взвешивании	Двустороннее

Окончание таблицы 4

Средний срок службы весов, лет	10
Средняя наработка на отказ, ч	17000
Среднее время восстановления работоспособности, ч	3
Диапазон рабочих температур весов модификаций, °C: МОСТ-Вагон – [Д1] МОСТ-Вагон – [Д2] МОСТ-Вагон – [Д3]	от –50 до +40 от –30 до +40 от –30 до +40
Диапазон рабочих температур индикаторов, °C	от –10 до +40
Диапазон рабочих температур ПК, °С	от +10 до +40

Знак утверждения типа

Знак утверждения типа наносится на маркировочную табличку, расположенную на ГПУ весов, фотохимическим способом и на титульный лист Руководства по эксплуатации весов ТНРО.427420.912 РЭ типографским способом.

Комплектность средства измерений

Таблица 6

Наименование	Кол-во
Весы в сборе или в разукомплектованном виде для целей транспортировки	1 компл.
ПК с установленным программным обеспечением «ВЕСЫ-Вагон»	1 шт. (при наличии в комплекте поставки)
Руководство по эксплуатации весов ТНРО.427420.912 РЭ	1 шт.
Руководство по эксплуатации индикатора	1 шт.
Паспорт на весы	1 шт.

Поверка

осуществляется по документам:

ГОСТ Р 53228-2008 (Приложение Н) для весов модификаций МОСТ-Вагон С и МОСТ-Вагон СД в режиме статического взвешивания, основное поверочное оборудование: весоповерочный вагон (вагоны) с двумя тележками и эталонными гирями класса точности M_1 и M_{1-2} по ГОСТ ОІМL R 111-1-2009 «Гири классов E_1 , E_2 , F_1 , F_2 , M_1 , M_{1-2} , M_2 , M_{2-3} , M_3 . Метрологические и технические требования»;

ГОСТ Р 8.598-2003 для весов модификаций МОСТ-Вагон Д и МОСТ-Вагон СД при взвешивании в движении, основное поверочное оборудование: испытательный состав (с локомотивом).

Сведения о методиках (методах) измерений

Метод измерений содержится в Руководстве по эксплуатации весов МОСТ-Вагон ТНРО.427420.912 РЭ.

Нормативные документы, устанавливающие требования к весам вагонным МОСТ-Вагон

- 1. ГОСТ Р 53228-2008 «Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания».
- 2. ГОСТ 30414-96 «ГСИ. Весы для взвешивания транспортных средств в движении. Общие технические требования».
- 3. ГОСТ 8.021-2005 «ГСИ. Государственная поверочная схема для средств измерения массы»
- 4. ГОСТ Р 8.598-2003 «ГСИ. Весы для взвешивания железнодорожных транспортных средств в движении. Методика поверки».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение государственных учётных операций, осуществление торговли и товарообменных операций,

Изготовитель

Общество с ограниченной ответственностью «Научно-Производственная Фирма «Тензометрия. Разработка и Оборудование» (ООО НПФ «ТенРО»)

Адрес: 650070, г. Кемерово, ул. Терешковой, 51 Почтовый адрес: 650000, г. Кемерово, а/я 32

тел./факс. (384 2) 36-51-90 / 39-00-30 / E-mail: tenro@kuzbass.net

Испытательный центр

Федеральное государственное унитарное предприятие «Сибирский государственный ордена Трудового Красного Знамени научно-исследовательский институт метрологии (ФГУП «СНИИМ»), зарегистрированное в Государственном реестре средств измерений под № 30007-09 от 12.12.2009

Адрес: 630004, г. Новосибирск, пр. Димитрова, 4 тел. (383) 210-08-14, факс (383) 210-13-60, E-mail: director@sniim.nsk.ru

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

М.п.	« <u></u>	<u></u> >>>	 _2013	Γ
		_	_	