

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.34.022.A № 48033

Срок действия до 11 сентября 2017 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Амперметры и вольтметры узкопрофильные Ф1730

ИЗГОТОВИТЕЛЬ

Открытое акционерное общество "Приборостроительный завод "ВИБРАТОР" (ОАО "Приборостроительный завод "ВИБРАТОР"), г. Санкт-Петербург

РЕГИСТРАЦИОННЫЙ № 51130-12

ДОКУМЕНТ НА ПОВЕРКУ **3ПА.399.125 РЭ**, раздел 6

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 2 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 11 сентября 2012 г. № 740

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя	Ф.В.Булыгин
Федерального агентства	
	2012 г.

Nº 006475

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Амперметры и вольтметры узкопрофильные Ф1730

Назначение средства измерений

Амперметры и вольтметры узкопрофильные $\Phi1730$ (далее приборы) предназначены для измерения силы постоянного тока - модификация $\Phi1730.$ ЭА и напряжения постоянного тока - модификация $\Phi1730.$ ЭВ, а также для сигнализации о выходе измеряемой величины из области заданных значений на объектах использования атомной энергии и других областях промышленности.

Описание средства измерений

Приборы представляют собой оптоэлектронные показывающие приборы с дискретноаналоговым отсчетом и со светодиодным указателем, сигнализирующие о выходе измеряемой величины из области заданных значений.

Конструктивно приборы выполнены в литом силуминовом корпусе, закрытом сверху крышкой. Внутри корпуса находятся печатные платы, на которых смонтированы элементы электрической схемы.

С задней стороны корпуса расположены радиатор и вилка штепсельного разъема, номера контактов и схемы внешних соединений. В верхней передней части корпуса приборов расположены: трехразрядный цифровой индикатор, кнопки управления и ввода уставок.

С лицевой стороны прибор закрывается наличником, состоящим из стекла и рамки. Циферблат имеет прорези по количеству светодиодов, входящих в отсчетное устройство.

Отсчётное устройство, размещённое на лицевой панели прибора и имеющее 52 светодиода, состоит из дискретно-аналогового индикатора значений измеряемой величины и трех уставок, которые могут работать как на повышение, так и на понижение.

Указатель измеряемой величины состоит либо из расположенных рядом двух светящихся светодиодов («зайчик»), либо из непрерывного ряда светящихся светодиодов («столбик»), а указатели значений уставок – из одного светодиода.

Панель управления, состоящая из кнопок управления и трёхразрядного цифрового индикатора, расположена на крышке прибора.

С помощью кнопок осуществляется вход в меню, контроль и изменение параметров прибора, включение цифровой индикации, выключение которой происходит через 1 минуту после завершения работы с ней.

На цифровом индикаторе отображаются численные значения измеряемой величины и задаваемые параметры.

Принцип действия приборов заключается в преобразовании входного сигнала в импульсы частоты с помощью преобразователя напряжение-частота. Встроенный микропроцессор считает импульсы за время кратное периоду частоты 50 Гц, производит масштабирование измеряемого сигнала, его сравнение с уставками, хранящимися в памяти, выдает цифровую информацию в устройство управления индикацией.

Приборы являются программируемыми, их параметры могут изменяться пользователем в процессе эксплуатации. Для связи с компьютером системы контроля и регулирования приборы могут иметь последовательный интерфейс RS-485.

В зависимости от варианта исполнения приборы имеют следующие обозначения:

- «ОИАЭ» приборы, поставляемое на объекты использования атомной энергии;
- «ОП» приборы, поставляемое на общепромышленные объекты.

При заказе приборов необходимо указать:

- 1) название и обозначение прибора;
- 2) диапазон измерения по входному сигналу;
- 3) диапазон показаний, наименование измеряемой физической величины и способ её написания на шкале буквами русского или латинского алфавита;

- 4) номинальное напряжение питания;
- 5) расположение шкалы (вертикальное или горизонтальное);
- 6) вид упаковки (если она влагозащитная);
- 7) цвет передней рамки (серый или черный);
- 8) вид исполнения («ОИАЭ» или «ОП»);
- 9) степень защиты корпуса по ГОСТ 14254, если она соответствует коду IPX3;
- 10) обозначение ТУ 4389-0180-05755097-06.

Прибор имеет модификации, для которых приняты следующие обозначения:

TC	п	TC	ш
Код	Диапазон измерений	Код	Диапазон измерений
01	0 – 50 мкА	24	0 - 5 B
02	$0 - 200 \ \text{мкA}$	25	-5 - 0 - 5 B
03	- 200 – 0 – 200 мкА	26	0 - 10 B
04	0 – 1 мА	27	- 10 – 0 – 10 B
05	0 - 2 MA	28	0 - 15 B
06	0 - 2,5 MA	29	- 15 – 0 – 15 B
07	-2,5-0-2,5 MA	30	0 - 30 B
08	0 – 5 мА	31	- 30 – 0 – 30 B
09	-5 - 0 - 5 MA	32	0 - 50 B
10	0 - 20 MA	33	- 50 – 0 – 50 B
11	- 20 – 0 – 20 мA	34	0 – 75 B
12	4 - 20 mA	35	- 75 – 0 – 75 B
13	0 – 1 A	36	$0 - 100 \; \mathrm{B}$
14	- 1 – 0 – 1 A	37	- 100 – 0 – 100 B
15	0 - 2 A	38	$0 - 150 \; \mathrm{B}$
16	-2-0-2 A	39	- 150 – 0 – 150 B
17	0 - 5 A	40	$0 - 250 \; \mathrm{B}$
18	-5 - 0 - 5 A	41	- 250 – 0 – 250 B
19	0 – 75 мВ	42	0 – 400 B
20	0 - 100 мB	43	- 400 – 0 – 400 B
21	- 100 – 0 – 100 мВ	44	0 – 600 B
22	0 – 1 B	45	- 600 – 0 – 600 B
23	- 1 – 0 – 1 B	46	другой

Цвет передней рамки:

01 – серый;

02 – черный.

Внешний вид приборов изображен на рисунке 1.

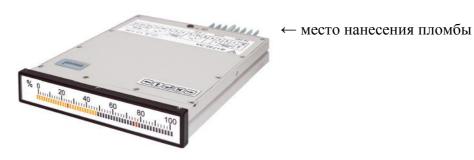


Рисунок 1 – Амперметры и вольтметры узкопрофильные Ф1730

Пломбирование приборов осуществляется мастикой, закрывающей крепёжные винты, находящиеся на крышке корпуса.

Программное обеспечение

Исходный код программы хранится во внутренней постоянной памяти микроконтроллера, что позволяет производить его идентификацию непосредственно в любой момент времени.

Идентификационные данные программного обеспечения приведены в табл. 1.

Таблица 1

Наименование	Идентификацион-	Номер версии	Цифровой идентифи-	Алгоритм
программного	ное наименование	(идентификаци-	катор программного	вычисления циф-
обеспечения	программного обес-	онный номер)	обеспечения (кон-	рового идентифи-
	печения	программного	трольная сумма ис-	катора программ-
		обеспечения	полняемого кода)	ного обеспечения
Ф1730	отсутствует	номер версии	AEOB	CRC16
		отсутствует		

Метрологически значимая часть программного обеспечения первого (высокого) уровня не оказывает влияния на метрологические характеристики.

Защита программного обеспечения от непреднамеренных и преднамеренных изменений соответствует уровню «С» для внутреннего программного обеспечения.

Метрологические и технические характеристики

Метрологические и технические характеристики приведены в табл. 2.

Таблица 2

Модификация	Диапазон измерений
Ф1730.ЭА	0-50; 0-200; -200-0-200 MKA
	0-1; $0-2$; $0-2,5$, $-2,5-0-2,5$; $0-5$, $-5-0-5$,
	0-20; $-20-0-20$; $4-20$ mA
	0-1; $-1-0-1$; $0-2$; $-2-0-2$; $0-5$; $-5-0-5$ A
	0-75; $0-100$; $-100-0-100$ mB
Ψ1/30.3B	0-1, $-1-0-1$, $0-5$, $-5-0-5$, $0-10$, $-10-0-10$,
	0-15, $-15-0-15$, $0-30$; $-30-0-30$, $0-50$; $-50-0-50$;
	0-75; $-75-0-75$; $0-100$; $-100-0-100$;
	0-150; $-150-0-150$; $0-250$; $-250-0-250$;
	0-400; $-400-0-400$; $0-600$; $-600-0-600$ B

Пределы допускаемой основной приведенной погрешности в процентах от	
конечного значения диапазона измерений, а для приборов с нулевой отметкой	
внутри диапазона – от суммы модулей конечных значений диапазона измере-	
ний, %:	
– измерений	±1,5
– срабатывания сигнализации	±0,5

Пределы допускаемой дополнительной погрешности, вызванной	
изменением температуры окружающего воздуха от нормальной до любой во	
всём диапазоне рабочих температур, %/10 °C:	
– измерений	±0,5
– срабатывания сигнализации	$\pm 0,25$
Пределы допускаемой дополнительной погрешности, вызванной влиянием	
относительной влажности воздуха 98 % при температуре 35 °C, %:	
– измерений	± 0.75
– срабатывания сигнализации	±0,37
Рабочие условия эксплуатации:	
– температура окружающего воздуха, °С	от минус 10 до 50
– относительная влажность воздуха при температуре 35 °C, %	98
– атмосферное давление, кПа	от 84 до 106,7
Параметры электропитания (в зависимости от исполнения):	
напряжение постоянного тока, В	12 ⁺¹⁰ / ₋₁₅ %; 24 ⁺¹⁰ / ₋₁₅ %
напряжение переменного тока частотой (50 \pm 3) Γ ц, B	$6^{+10}_{-15} \%; 220^{+10}_{-15} \%$
Потребляемая мощность, В.А, не более:	
– указатель измеряемой величины в виде «зайчика»	2,5
– указатель измеряемой величины в виде «столбика»	6
Степень защиты от твердых тел и воды по ГОСТ 14254	IP20;
	IPX3 – по особо-
	му заказу
Габаритные размеры, (длина×ширина×высота), мм, не более:	•
– без скобы	160×30×262
– со скобой	182×30×270
Масса прибора, кг, не более	1,1
Масса скобы, кг, не более	0,35
Средняя наработка на отказ, ч, не менее	150000
Приборы удовлетворяют требованиям по электромагнитной совместимости	, предъявляемым к

Приборы удовлетворяют требованиям по электромагнитной совместимости, предъявляемым к группе исполнения IV по ГОСТ Р 50746, критерий качества функционирования — A, и соответствуют требованиям ГОСТ Р 51317.4.2, ГОСТ Р 51317.4.3, ГОСТ Р 51317.4.4, ГОСТ Р 51317.4.5, ГОСТ Р 51317.4.6 ГОСТ Р 51317.4.11

Знак утверждения типа

наносят на табличку прибора методом пьезоструйной печати, на титульный лист Руководства по эксплуатации и Паспорт – типографским способом.

Комплектность средства измерений

В комплект поставки входят:

– прибор (в зависимости от заказа)	1 шт.;
- Руководство по эксплуатации	1 экз.;
– Руководство оператора	1 экз.;
– Паспорт	1 экз.;
– комплект скобы	1 шт.;
– ручка для извлечения прибора из щита	1 шт.;
компакт-диск с программой «Интерфейс»	1 шт.

Поверка

осуществляется по методике поверки, изложенной в разделе 6 «Методика поверки», Руководства по эксплуатации 3ПА.399.125 РЭ «Амперметры и вольтметры узкопрофильные Ф1730», утвержденной ГЦИ СИ ФБУ «Тест-С.-Петербург» 20.07.2012 г.

Основные средства поверки:

- калибратор программируемый $\Pi 320$, 0 1000 B, 0 100 мA, $\Pi \Gamma \pm 0.01$ %;
- калибратор постоянного тока $\Pi 321$, 0 10 A, $\Pi \Gamma \pm 0.05$ %.

Сведения о методиках (методах) измерений

Методика измерений изложена в Руководстве по эксплуатации 3ПА.399.125 РЭ.

Нормативные и технические документы, устанавливающие требования к амперметрам и вольтметрам узкопрофильным Ф1730

- 1. ГОСТ 8.022-91 «ГСИ. Государственный поверочный эталон и государственная поверочная схема для средств измерений силы постоянного электрического тока в диапазоне от $1\cdot 10^{-16}$ до $30~\mathrm{A}$ ».
- 2. ГОСТ 8.027-2001 «ГСИ. Государственный поверочный эталон и государственная поверочная схема для средств измерений постоянного электрического напряжения и электродвижущей силы».
- 3. ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».
- 4. ТУ 4389-0180-05755097-06 «Амперметры и вольтметры узкопрофильные Φ 1730. Технические условия».
- 5. 3ПА.399.125 РЭ «Амперметры и вольтметры узкопрофильные Ф1730. Руководство по эксплуатации». Раздел 6 "Методика поверки".

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

 выполнение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

Открытое акционерное общество «Приборостроительный завод «ВИБРАТОР» (ОАО «Приборостроительный завод «ВИБРАТОР»)

Адрес: 194292, г. Санкт- Петербург, 2-й Верхний пер., д. 5 лит. А.

Тел.: (812) 517-99-10, 517-99-16, факс: (812) 517-99-55, 590-95-80.

http://www.vbrspb.ru, e-mail: kildiyarov@vibrator.spb.ru.

Испытательный центр

ГЦИ СИ ФБУ «Тест-С.-Петербург» зарегистрирован в Государственном реестре под N = 30022-10.

190103, г. Санкт-Петербург, ул. Курляндская, д. 1.

Тел.: (812) 244-62-28, 244-12-75, факс: (812) 244-10-04.

E-mail: letter@rustest.spb.ru.

Заместитель Руководителя
Федерального агентства по техническому
Регулированию и метрологии

Ф.В.Булыгин

М.П. «___»____ 2012 г.