

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

DE.C.34.004.A № 46365

Срок действия до 05 мая 2017 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Преобразователи измерительные серий IM, IMS, МК

ИЗГОТОВИТЕЛЬ

Фирма "Hans Turck GmbH & Co. KG", Германия

РЕГИСТРАЦИОННЫЙ № 49765-12

ДОКУМЕНТ НА ПОВЕРКУ МП 49765-12

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 2 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 05 мая 2012 г. № 297

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства	Е.Р.Петрося
	2012 г.

Серия СИ

№ 004512

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Преобразователи измерительные серий IM, IMS, MK

Назначение средства измерения

Преобразователи измерительные серий IM, IMS, MK (далее по тексту – преобразователи или ИП) предназначены для измерений, преобразования и гальванической развязки сигналов, поступающих от термопреобразователей сопротивления, термоэлектрических преобразователей, Ом/мВ устройств постоянного тока, источников импульсного сигнала (меандр), а также нормированных аналоговых сигналов постоянного тока или напряжения в унифицированные электрические сигналы постоянного тока или напряжения, а также - в цифровые кодовые сигналы для передачи по протоколу НАКТ. ИП серии IM, МК также предназначены для передачи сигналов из взрывоопасной зоны в безопасную зону и наоборот.

Описание средства измерений

Принцип действия преобразователей основан на преобразовании сигнала первичного термопреобразователя (термопары, термосопротивления), Ом/мВ-устройства, источника импульсного сигнала (меандр) или нормированного аналогового сигнала постоянного тока (0/4..20 мА, 0..5 мА, 0..10 мА) или напряжения (0/2..10 В, 0..2,5 В, 0..5 В) в унифицированный выходной сигнал постоянного тока (0/4..20 мА) с возможностью наложения на него цифрового частотно-модулированного сигнала в стандарте НАRT или напряжения (0/2..10 В).

Преобразователи функциональной группы IM21 моделей IM21-14-CDTRI, IM21-14EX-CDTRI представляют собой одноканальные промежуточные устройства с искробезопасной входной цепью (модель с индексом «EX») и гальванической развязкой входа, выхода и цепей питания и предназначены для измерения и преобразования импульсного сигнала (меандр) от размещаемых во взрывоопасной зоне (модель с индексом «EX») двухпроводных датчиков с выходным сигналом стандарта NAMUR (в соответствии с EN 60947-5-6), а также от трехпроводных датчиков с выходом рпр-типа с уровнем логического нуля в пределах 0..3 В, логической единицы в пределах 5..30 В в нормированный выходной сигнал постоянного тока 0/4..20 мА.

Преобразователи функциональной группы IM31 моделей IM31-11-I, IM31-12-I, IM31-22-I, IM31-11EX-I, IM31-12EX-I, IM31-22EX-I, IM31-11EX-U, IM31-22EX-U представляют собой одно- и двухканальные промежуточные устройства с искробезопасной входной цепью (модели с индексом «EX») и гальванической развязкой входа, выхода и цепей питания и предназначены для измерения и преобразования аналоговых сигналов от размещаемых во взрывоопасной зоне (модели с индексом «EX») двухпроводных датчиков или измерительных преобразователей с унифицированным выходным сигналом постоянного тока 0/4..20 мА или напряжения 0/2..10 В в нормированный выходной сигнал постоянного тока 0/4..20 мА или напряжения 0/2..10 В.

Преобразователи функциональной группы IM33 моделей IM33-11EX-HI, IM33-12EX-HI, IM33-22EX-HI, IM33-22EX-HI/24VDC, IM33-12EX-HI/24VDC, IM33-12EX-HI/24VDC, IM33-22EX-HI/24VDC, IM33-11-HI/24VDC, IM33-22-HI/24VDC, IM33-14EX-CDRI представляют собой одно- и двухканальные промежуточные устройства с искробезопасной входной цепью (модели с индексом «EX») и гальванической развязкой входа, выхода и цепей питания и предназначены для измерения и преобразования аналоговых токовых (0/4..20 мА) и цифровых сигналов с размещаемых во взрывоопасной зоне (модели с индексом «EX») двух- и трехпроводных датчиков или измерительных преобразователей в нормированный выходной сигнал постоянного тока 0/4..20 мА с возможностью наложения на него цифрового частотно-модулированного сигнала для передачи по HART-протоколу (модели с индексом «Н»), а также для питания (двухпроводные датчики или измерительные преобразователи с

пассивным токовым выходом и трехпроводные датчики или измерительные преобразователи с активным токовым выходом).

Преобразователи функциональной группы IM34 моделей IM34-11EX-I, IM34-11EX-CI, IM34-11-CI, IM34-11EX-CI/K60, IM34-11EX-CI/K51, IM34-12EX-RI, IM34-12EX-CRI, IM34-14EX-CDRI) и милливольтовых устройств постоянного тока в унифицированный электрический выходной сигнал постоянного тока 0/4..20 мА.

Преобразователи функциональной группы IM35 моделей IM35-11EX-HI, IM35-11EX-HI/24VDC, IM35-22EX-HI, IM35-22EX-HI/24VDC, IM35-11-HI/24VDC представляют одно- и двухканальные промежуточные устройства с искробезопасной выходной цепью (модели с индексом «EX») и гальванической развязкой входа, выхода и цепей питания и предназначены для измерения и преобразования аналоговых токовых (0/4..20 мА) и цифровых сигналов с размещаемых в безопасной зоне двухпроводных датчиков или с выходных аналоговых каналов систем управления и передачей их в безопасную или взрывоопасную (модели с индексом «EX») зону в виде нормированного выходного сигнала постоянного тока 0/4..20 мА с возможностью наложения на него цифрового частотномодулированного сигнала для передачи по HART-протоколу.

Преобразователи функциональной группы IM36 моделей IM36-11Ex-I/24VDC, IM36-11Ex-U/24VDC представляют собой одноканальные промежуточные устройства с искробезопасной входной цепью и гальванической развязкой входа, выхода и цепей питания и предназначены для питания, измерения и преобразования сигналов с размещаемых во взрывоопасной зоне потенциометров в нормированный выходной сигнал постоянного тока 0..20 мА или напряжения 0..10 В.

Преобразователи функциональной группы IM43 моделей IM43-14-RI, IM43-14-SRI, IM43-14-CDRI представляют собой одноканальные промежуточные устройства с гальванической развязкой входа, выхода и цепей питания и предназначены для измерения и преобразования входных аналоговых сигналов постоянного тока 0/4..20 мА или напряжения 0/2..10 В в нормированный выходной сигнал постоянного тока 0/4..20 мА и формирования управляющего сигнала при достижении указанными сигналами заданной величины.

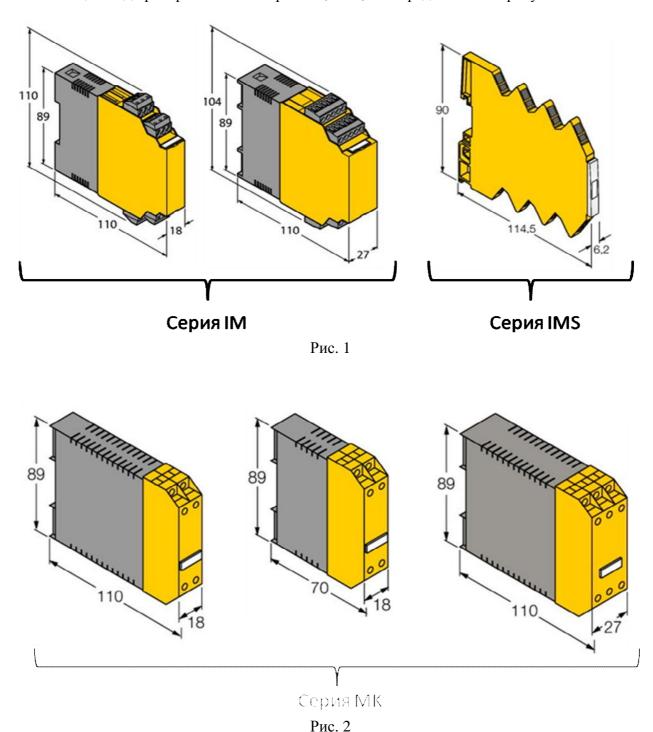
Преобразователи функциональной группы МК31 моделей МК31-11EX0-LI/24VDC, МК31-111EX0-LI/24VDC, МК31-116EX0-LI/24VDC, МК31-111-LI/24VDC, МК31-111-LI/24VDC, МК31-111-LI/24VDC, МК31-111-LI/24VDC, МК31-112-LU/24VDC, МК31-11EX0-LU/24VDC, МК31-113EX0-LU/24VDC представляют собой одноканальные промежуточные устройства с искробезопасной входной цепью (модели с индексом «ЕХ») и гальванической развязкой входа, выхода и цепей питания и предназначены для измерения и преобразования аналоговых сигналов с размещаемых во взрывоопасной зоне (модели с индексом «ЕХ») двухпроводных датчиков или измерительных преобразователей с унифицированным выходным сигналом постоянного тока 0/4..20 (0..5; 0..10) мА или напряжения 0/2..10 (0..2,5; 0..5) В в нормированный выходной сигнал постоянного тока 0/4..20 мА или напряжения 0/2..10 В.

Преобразователи функциональной группы МК32 моделей МК32-11-LI/24VDC, МК32-11EX0-LI/24VDC, МК32-11EX0-LI/24VDC, МК32-11EX0-LI/24VDC/К43, МК32-11EX0-LI/24VDC/К44, МК32-11EX0-LI/24VDC/К45 представляют собой одноканальные промежуточные устройства с искробезопасной входной цепью (модели с индексом «EX») и гальванической развязкой входа, выхода и цепей питания и предназначены для питания, измерения и преобразования сигналов с размещаемых во взрывоопасной зоне (модели с индексом «EX») термопреобразователей сопротивления с номинальными статическими характеристиками

преобразования (НСХ) по ГОСТ 6651-2009/МЭК 60751 в нормированный выходной сигнал постоянного тока 0/4..20 мА.

Преобразователи функциональной группы МК33 моделей МК33-LI-EX0/24VDC, МК33-11EX0-LI/24VDC, МК33-221EX0-HLI/24VDC, МК33-221EX0-HLI/24VDC/К40, МК33-11EX0-PLI/24VDC, МК33-11EX0-PLI/24VDC, МК33-11EX0-PLI/24VDC/К52 представляют собой одно- и двухканальные промежуточные устройства с искробезопасной входной цепью и гальванической развязкой входа, выхода и цепей питания и предназначены для измерения и преобразования аналоговых и цифровых сигналов с размещаемых во взрывоопасной зоне двухи трехпроводных датчиков или измерительных преобразователей с унифицированным выходным сигналом 0/4..20 мА в нормированный выходной сигнал постоянного тока 0/4..20 мА с возможностью наложения на него цифрового частотно-модулированного сигнала для передачи по НАRT-протоколу (модели с индексом «Н»), а также для питания (двухпроводные датчики или измерительные преобразователи с пассивным токовым выходом и трехпроводные датчики или измерительные преобразователи с активным токовым выходом и трехпроводные датчики или измерительные преобразователи с активным токовым выходом).

Преобразователи функциональной группы МК35 моделей МК35-11EX0-LI/24VDC, МК35-11EX0-LU/24VDC представляют одноканальные промежуточные устройства с искробезопасной выходной цепью и гальванической развязкой входа, выхода и цепей питания и предназначены для преобразования аналоговых выходных сигналов постоянного тока 0..20 мА или напряжения 0..10 В с размещаемых в безопасной зоне двухпроводных датчиков или с выходных аналоговых каналов систем управления и передачи их во взрывоопасную зону в виде нормированных выходных сигналов постоянного тока 0..20 мА или напряжения 0..10 В.


Преобразователи серии IMS моделей IMS-AI-UNI/24VDC, IMS-AI-DLI-22-DLI/L, IMS-TI-PT100/24VDC представляют собой одно- и двухканальные промежуточные устройства с гальванической развязкой входа, выхода и цепей питания (только для моделей IMS-AI-UNI/24VDC, IMS-TI-PT100/24VDC) и предназначены для измерения и преобразования аналоговых сигналов с двухпроводных датчиков или измерительных преобразователей с унифицированным выходным сигналом постоянного тока 0/4..20 мА или напряжения 0..10 В, а также с термопреобразователей сопротивления с номинальной статической характеристикой преобразования (HCX) Pt100 по ГОСТ 6651-2009/МЭК 60751 в нормированный выходной сигнал постоянного тока 0/4..20 мА или напряжения 0..10 В.

Преобразователи серий IM, IMS, MK выполнены в поликарбонатном корпусе, внутри которого расположен электронный блок, включающий в себя аналого-цифровой преобразователь, цифро-аналоговый преобразователь, микропроцессор и вспомогательные цепи. На корпусе расположены клеммы с прижимными пластинами и фиксирующими винтами для подключения входного сигнала, напряжения питания и для вывода выходного сигнала. Монтаж преобразователей осуществляется на стандартных 35-мм DIN-рейках (с фиксацией на защелку).

Конфигурацию преобразователей IM для моделей, имеющих индекс «С», можно изменять при помощи персонального компьютера и специального программного обеспечения (DTM). Преобразователи моделей, имеющие индекс «Н», обеспечивают двухстороннюю передачу информации в виде кодовых сигналов HART-протокола. Преобразователи моделей, имеющие индекс «R», также имеют релейные выходы для управления внешними электрическими цепями.

Преобразователи серии IM, МК выполнены во взрывозащищенном исполнении с искробезопасными входными или выходными цепями и имеют маркировку взрывозащиты [Exia]IIC по ГОСТ Р 51330.10-99 (модули с индексом «EX»).

Общий вид преобразователей серий IM, IMS, MK представлен на рисунках 1-2:

Программное обеспечение

Программное обеспечение преобразователей моделей, имеющих в обозначении индекс «С», позволяет изменять конфигурацию преобразователей - выбирать тип входного сигнала, номинальную статическую характеристику преобразования (НСХ) первичного датчика, схему подключения, диапазон (интервал) измерений и другие настройки, а также принимать различную диагностическую информацию о состоянии ИП.

Программное обеспечение преобразователей разделено на 2 части – встроенную и автономную. Встроенная (полностью метрологическая значимая) часть ПО является фиксированной и может быть изменена только на заводе-изготовителе, при этом уровень защиты ПО от преднамеренного и непреднамеренного доступа соответствует уровню «А» по МИ 3286-2010.

Уровень защиты метрологически значимой автономной части программного обеспечения от преднамеренного и непреднамеренного доступа соответствует уровню «C» по МИ 3286-2010.

Идентификационные данные автономной части ПО приведены в таблице 1:

Таблица 1

Наименование	Идентифика-	Номер	Цифровой иден-	Алгоритм вы-
программного	ционное	версии (иден-	тификатор про-	числения циф-
обеспечения	наименование	тифика-	граммного обеспе-	рового иден-
	программного	ционный	чения (контроль-	тификатора
	обеспечения	номер) про-	ная сумма испол-	программного
		граммного	няемого кода)	обеспечения
		обеспечения		
		(*)		
Программное обеспече-	«DTM-	1.0.1000	не определен	неизвестен
ние преобразователей мо-	IMxxxxxx»			
делей, имеющих в обо-				
значении индекс «С»				
(*) – и более поздние версии				

Метрологические и технические характеристики

Диапазоны входных и выходных сигналов в зависимости от серии и модели преобразователей приведены в таблице 2:

Таблица 2

	_	Таолица 2	
Наименование модели преобра-	Диапазон входных сигналов	Диапазон выходных	
зователя		сигналов	
серия ІМ (ІМ21)			
IM21-14-CDTRI	0,06600000/мин	0/420 мА	
IM21-14EX-CDTRI	0,06600000/мин	0/420 мА	
	серия IM (IM31)		
IM31-11-I	0/420 мА или 0/210 В	0/420 мА	
IM31-12-I	0/420 мА или 0/210 В	0/420 мА (x2*)	
IM31-22-I	0/420 мА (х2*) или	0/420 мА (x2*)	
	0/210 B (x2*)		
IM31-11EX-I	0/420 мА или 0/210 В	0/420 мА	
IM31-12EX-I	0/420 мА или 0/210 В	0/420 мА (x2*)	
IM31-22EX-I	0/420 мА (х2*) или	0/420 мА (x2*)	
	0/210 B (x2*)		
IM31-11Ex-U	0/420 мА или 0/210 В	0/210 B	
IM31-22Ex-U	0/420 мА (х2*) или	0/210 B (x2*)	
	0/210 B (x2*)		
	серия IM (IM33)		
IM33-11EX-HI	0/420 мА	0/420 мА	
IM33-12EX-HI	0/420 мА	0/420 мА (x2*)	
IM33-22EX-HI	0/420 мА (x2*)	0/420 мА (x2*)	
IM33-11EX-HI/24VDC	0/420 мА	0/420 мА	
IM33-12EX-HI/24VDC	0/420 мА	0/420 мА (x2*)	
IM33-22EX-HI/24VDC	0/420 мA (x2*)	0/420 мА (х2*)	
IM33-11-HI/24VDC	0/420 мА	0/420 мА	
IM33-22-HI/24VDC	0/420 мA (x2*)	0/420 мА (х2*)	
IM33-14EX-CDRI	0/420 мА	0/420 мА	

серия ІМ (ІМ34)					
IM34-11Ex-I	Pt100, Ni100, B, E, J, K, N, R,	0/420 мА			
IM34-12Ex-RI	S, T, L; -160+160 мВ				
IM34-11Ex-CI					
IM34-12Ex-CRI					
IM34-11EX-CRI/K60					
IM34-11EX-CRI/K51					
IM34-11-CI					
IM34-14EX-CDRI	Pt100, Ni100, B, E, J, K, N, R,	0/420 мА			
	S, T, L; 01500 Ом;				
	-160+160 мВ				
IM34-12EX-CRI/K63	Pt100, Ni100, 100П, 50П, 50М,	0/420 мА			
	53M, 100M, B, E, J, K, N, R, S,				
	T, L, L (ΓΟCT P 8.585-2001),				
	A-1, A-2, A-3, M (ΓΟСТ P				
	8.585-2001);				
	-160+160 мВ				
	серия IM (IM35)				
IM35-11EX-HI	0/420 мА	0/420 мА			
IM35-11EX-HI/24VDC					
IM35-11-HI/24VDC					
IM35-22EX-HI	0/420 MA (x2*)	0/420 мА (x2*)			
IM35-22EX-HI/24VDC	` '	,			
	серия IM (IM36)				
IM36-11EX-I/24VDC	80020000 Ом	020 мА			
IM36-11EX-U/24VDC	80020000 Ом	010 B			
	серия IM (IM43)				
IM43-14-RI	0/420 мА или 0/210 В	0/420 мА			
IM43-14-SRI	0/420 мА или 0/210 В	0/420 мА			
IM43-14-CDRI	0/420 мА или 0/210 В	0/420 мА			
серия МК (МК31)					
MK31-11EX0-LI/24VDC	020 мА или 010 В	020 мА			
MK31-111EX0-LI/24VDC	020 мА или 010 В	420 мА			
MK31-116EX0-LI/24VDC	05 мА или 02,5 В	420 мА			
MK31-11-LI/24VDC	020 мА или 010 В	020 мА			
MK31-111-LI/24VDC	020 мА или 010 В	420 MA			
MK31-11-LU/24VDC	020 мА или 010 В	010 B			
MK31-112-LU/24VDC	420 мА или 210 B	010 B			
MK31-11EX0-LU/24VDC	020 мА или 010 B	010 B			
MK31-113EX0-LU/24VDC	020 м/ч или 010 В	210 B			
серия МК (МК32)					
MK32-11-LI/24VDC	-50+100 °C, 0+200 °C,	0/420 мА			
	0+400 °C, 0+600 °C (Pt100)	U/ T ZU IVI/1			
MK32-11EX0-LI/24VDC	-50+100 °C, 0+200 °C,	0/420 мА			
	0+400 °C, 0+600 °C (Pt100)	U/ 7 2U MA			
MK32-11EX0-LI/24VDC/K43	-50+100 °C, 0+200 °C (50M)	0/420 мА			
MK32-11EX0-LI/24VDC/K44	-50+100 °C, 0+200 °C	0/420 MA 0/420 MA			
WK32-11EAU-LI/24VDC/K44	-50+100 °C, 0+200 °C (100M)	U/4∠U MA			
MV22 11EV0 L1/24VDC/V45	-50+100 °C, 0+200 °C (53M)	0/420 мА			
MK32-11EX0-LI/24VDC/K45	-50+100 C, 0+200 C (53M)	U/4∠U MA			

серия МК (МК33)			
MK33-LI-EX0/24VDC	0/420 мА	0/420 мА	
MK33-11EX0-LI/24VDC	0/420 мА	0/420 мА	
MK33-221EX0-HLI/24VDC	0/420 MA (x2*)	0/420 mA (x2*)	
MK33-221EX0-HLI/24VDC/K40	0/420 MA (x2*)	0/420 mA (x2*)	
MK33-11EX0-PLI/24VDC/K52	0/420 мА	0/420 мА	
MK33-11EX0-PLI/24VDC	0/420 мА	0/420 мА	
серия МК (МК35)			
MK35-11EX0-LI/24VDC	020 мА	020 мА	
MK35-11EX0-LU/24VDC	010 B	010 B	
серия IMS			
IMS-AI-UNI/24VDC	0/420 мА или 010 В	0/420 мА или 010 В	
IMS-AI-DLI-22-DLI/L	020 mA (x2*)	020 мА (x2*)	
IMS-TI-PT100/24VDC	-50+150 °C, 0+100 °C,	0/420 мА или 010 В	
	0+200 °C (Pt100)		

Примечание: * - количество выходов (>1).

Пределы допускаемой основной приведенной погрешности преобразователей, % (от верхнего предела диапазона выходных сигналов):

Серия IM (кроме ИП функциональной группы IM34):

- \pm 0,2 для функциональной группы IM31, моделей IM35-22EX-HI, IM35-11EX-HI, IM35-11-HI:
- ± 0,1 для функциональных групп IM33 (кроме IM33-14EX-CDRI), моделей M35-22EX-HI/24VDC, IM35-11EX-HI/24VDC, IM43 (кроме IM43-14-CDRI);
- \pm 0,05 для функциональной группы IM21, моделей IM33-14EX-CDRI, IM43-14-CDRI.

Серия МК:

- $\pm 0,25$ (для каждого поддиапазона) для функциональной группы МК32;
- \pm 0,2 для функциональных групп МК31, МК33, МК35;

Серия IMS:

- \pm 0,3 (для каждого поддиапазона) для модели IMS-TI-PT100/24VDC;
- \pm 0,1 для моделей IMS-AI-UNI/24VDC, IMS-AI-DLI-22-DLI/L.

Пределы допускаемой дополнительной погрешности от изменения температуры окружающей среды $(23 \pm 5 \, ^{\circ}\text{C})$, % (от верхнего значения диапазона выходных сигналов)/ $1 \, ^{\circ}\text{C}$:

Серия ІМ (кроме ИП функциональной группы ІМ34):

- $\pm 0,02$ для функциональной группы IM36;
- \pm 0,01 для функциональных групп IM31, IM33 (кроме IM33-14EX-CDRI), IM35;
- $\pm 0,005$ для функциональной группы IM43 (кроме IM43-14-CDRI);
- $\pm\,0,\!0025$ для функциональной группы IM21, моделей IM33-14EX-CDRI, IM43-14-CDRI. Серия МК:
- ± 0.02 для функциональной группы МК31;
- $\pm 0,01$ для функциональных групп МК33, МК35;
- $\pm 0,005$ для функциональной группы МК32.

Серия IMS:

 $\pm 0,00015.$

Пределы допускаемых основной и дополнительной погрешностей** преобразователей функциональной группы IM34 в зависимости от типа входного и выходных сигналов приведены в таблице 3:

Таблица 3

Тип НСХ,	Диапазон	Основная	Дополнительная
входные /	измерений	погрешность ($\Delta_{\scriptscriptstyle och}$)	погрешность /
выходные	_	1 000	$1^{\circ}C(\Delta_{\partial on})$
сигналы			0011
Pt100	-200+800 °C	±0,05 Ом	± 0,003 Ом
Ni100	-60+250 °C	±0,05 Ом	± 0,003 Ом
50Π	-200+850 °C	±0,05 Ом	± 0,003 Ом
100Π	-200+1100 °C	±0,05 Ом	± 0,003 Ом
50M	-50+200 °C	±0,05 Ом	± 0,003 Ом
53M	-50+200 °C	±0,05 Ом	± 0,003 Ом
100M	-50+200 °C	±0,05 Ом	± 0,003 Ом
В	+100+1750 °C	±0,015 мВ	± 0,0032 мВ
Е	-200+900 °C	±0,015 мВ	± 0,0032 мВ
J	-200+1200 °C	±0,015 мВ	± 0,0032 мВ
K	-200+1370 °C	±0,015 мВ	± 0,0032 мВ
L	-200+900 °C	±0,015 мВ	± 0,0032 мВ
N	-200+1300 °C	±0,015 мВ	± 0,0032 мВ
R	-50+1750 °C	±0,015 мВ	± 0,0032 мВ
S	-50+1750 °C	±0,015 мВ	± 0,0032 мВ
T	-200+400 °C	±0,015 мВ	± 0,0032 мВ
L	-200+800 °C	±0,015 мВ	± 0,0032 мВ
(ΓΟCT P 8.585-2001)			
A-1	0+1750 °C	±0,015 мВ	± 0,0032 мВ
A-2	0+1750 °C	±0,015 мВ	± 0,0032 мВ
A-3	0+1750 °C	±0,015 мВ	± 0,0032 мВ
M	-200+100 °C	±0,015 мВ	± 0,0032 мВ
(ΓΟCT P 8.585-2001)			
мВ-вход	-160+160 мВ	±0,015 мВ	± 0,0032 мВ
Ом-вход	01500 Ом	± 0,05 Ом	± 0,003 Ом
мА-выход	0/420 мА	$\pm0,\!005\;{ m mA}$	±0,0005 мА

Примечание:

** - основная и дополнительные погрешности равны сумме погрешностей входных и выходных сигналов:

 $\Delta(\Sigma och)$, % (от интервала измерений) = $\pm(\Delta_{och}/(R(U)_{max}-R(U)_{min})+0.005/(I_{max}-I_{min}))*100\%$, $\Delta(\Sigma \partial on)$, мА / 1 °C = $\pm(\Delta_{gon}*(I_{max}-I_{min})/(R(U)_{max}-R(U)_{min})+0.0005$ мА), где: Δ_{och} и Δ_{gon} – из таблицы 3; $R(U)_{max}-R(U)_{min}$ – интервал измерений в Ом или мВ; $I_{max}-I_{min}$ – диапазон изменения выходного сигнала (16 или 20 мА).

Пределы абсолютной погрешности автоматической компенсации температуры свободных (холодных) концов термопары (для преобразователей функциональной группы IM34), °C: ± 1 (при использовании дополнительного модуля термокомпенсации IM-3-CJT); ± 2 .

Напряжение питания (в зависимости от серии и модели преобразователей), В: 19...29, 20...125, 20...250 (постоянный ток); 20...250 (переменный ток).

Габаритные размеры, мм:

- для модулей серии IM: 110×104×18, 110×104×27;
- для модулей серии IMS: 114,5×90×6,2;
- для модулей серии MK: 70×89×18, 110×89×18, 70×89×27.

Знак утверждения типа

Знак утверждения типа наносится на титульный лист паспорта (в правом верхнем углу) типографским способом.

Комплектность средства измерений

Преобразователь (модель и исполнение в соответствии с заказом) – 1 шт.

Паспорт -1 экз.

Методика поверки – 1 экз. (на партию при поставке в один адрес).

По дополнительному заказу: HART-коммуникатор, внешний модуль термокомпенсации IM-3-CJT.

Поверка

осуществляется по документу МП 49765-12 «Преобразователи измерительные серий IM, IMS, MK. Методика поверки», разработанному и утверждённому ГЦИ СИ ФГУП «ВНИ-ИМС», 27.02.2012г.

Основные средства поверки:

- термометр цифровой прецизионный DTI-1000, пределы допускаемой абсолютной погрешности: ± 0.031 °C в диапазоне температур: -50...+400 °C;
- многоканальный прецизионный измеритель температуры МИТ 8.10(M) с пределами допускаемой основной абсолютной погрешности измерения напряжения $\pm (10^{-4} \cdot U + 1)$ мкВ, где U –измеряемое напряжение, мВ; сопротивления $\pm (10^{-5} \cdot R + 5 \cdot 10^{-4})$, где R измеряемое сопротивление, Ом;
 - однозначная мера электрического сопротивления эталонная Р3030, 10 Ом, кл.0,001;
 - компаратор напряжений Р3003 с калибратором тока ЕР3003, кл. 0,0005;
 - мера электрического сопротивления многозначная Р3026-1, кл.0,002;
- генератор импульсов Γ 5-60, амплитуда основных импульсов (50 Ом) 0,001-10 В, погрешность установки амплитуды 0,03U+2 мВ, длительность импульсов: 0,1-999990 (при внутреннем запуске), 0,1-999999 (при внешнем запуске);
- HART-коммуникатор или иной программно-аппаратный комплекс с поддержкой протокола HART, позволяющий визуализировать измеренную преобразователем температуру и перенастроить измерительный преобразователь на иной диапазон и тип первичного преобразователя.

Сведения о методиках (методах) измерений: отсутствуют.

Нормативные и технические документы, устанавливающие требования к преобразователям измерительным серий IM, IMS, MK

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия.

Международный стандарт МЭК 60751 (2008, 07) Промышленные чувствительные элементы термометров сопротивления из платины.

ГОСТ 6651-2009 ГСИ. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний.

Международный стандарт МЭК 60584-1. Термопары. Часть 1. Градуировочные таблицы. ГОСТ Р 8.585-2001 ГСИ. Термопары. Номинальные статические характеристики преобразования.

Техническая документация фирмы «Hans Turck GmbH & Co. KG», Германия.

ГОСТ 8.558-93 ГСИ. Государственная поверочная схема для средств измерений температуры.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление производственного контроля за соблюдением установленных законодательством Российской Федерации требований промышленной безопасности к эксплуатации опасного производственного объекта; выполнение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель фирма «Hans Turck GmbH & Co. KG», Германия

Адрес: D-45466 Mülheim an der Ruhr Тел./факс: 0208-4952-0 / 0208-4952-264

Заявитель Общество с ограниченной ответственностью (ООО) «ТУРК РУС»

Адрес: 127106, г. Москва, Алтуфьевское шоссе, 1/7

Тел./факс: (495) 234-26-61 / 234-26-65

Испытательный центр

Государственный центр испытаний средств измерений (ГЦИ СИ) ФГУП «ВНИИМС», г. Москва

Аттестат аккредитации от 27.06.2008, регистрационный номер в Государственном реестре средств измерений № 30004-08.

Адрес: 119361, г.Москва, ул.Озерная, д.46 Тел./факс: (495) 437-55-77 / 437-56-66.

E-mail: office@vniims.ru, адрес в Интернете: www.vniims.ru

Заместитель				
Руководителя Федерально	го агентства			
по техническому регулиро	ванию			
и метрологии				Е.Р. Петросян
	М.п.	«	<u></u>	2012 г.