

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.32.007.A № 44775

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Установка для определения плотности теплового потока при горении нанопорошков металлов TEPMOMET-1

ЗАВОДСКОЙ НОМЕР 001

ИЗГОТОВИТЕЛЬ

На<mark>ци</mark>ональный исследовательский Томский политехнический универс<mark>ите</mark>т. Институт физики высоких технологий (ИФВТ ТПУ), г.Томск

РЕГИСТРАЦИОННЫЙ № 48494-11

ДОКУМЕНТ НА ПОВЕРКУ ИФВТ.405115.001 МП

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **15 декабря 2011 г.** № **6379**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя	Е В Подраса	
Федерального агентства	Е.Р.Петрося	H
	" 2011 г.	

Серия СИ

№ 002870

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Установка для определения плотности теплового потока при горении нанопорошков металлов TEPMOMET-1

Назначение средства измерений

Установка для определения плотности теплового потока при горении нанопорошков металлов TEPMOMET-1 (далее – установка TEPMOMET-1) предназначена для измерения плотности теплового потока при горении нанопорошков металлов и их смесей при определении степени термической безопасности и оперативном контроле их качества.

Описание средства измерений

Принцип действия установки TEPMOMET-1 основан на измерении плотности теплового потока, возникающего при горении нанопорошка определенной массы, датчиком плотности теплового потока.

Установка TEPMOMET-1 состоит из измерительного блока и блока термостабилизации датчика.

Измерительный блок выполнен в унифицированном корпусе, изготовленном из металла. В корпусе измерительного блока находятся:

- поджигающее устройство (лазер);
- измерительная камера с гиперболоидным отражателем и столиком для размещения пробы нанопорошка;
 - измерительный датчик теплового потока.

На передней и задней панелях электронного блока располагаются элементы управления и регулировки, разъемы.

Блок измерительного датчика плотности теплового потока выполнен в виде полого алюминиевого корпуса, с укрепленным на нем датчиком плотности теплового потока. Во время измерения для термостабилизации датчика внутри алюминиевого корпуса прокачивается охлаждающая жидкость (вода).

Блок термостабилизации состоит из емкости с охлаждающей жидкостью (водой), температура которой стабилизируется тающим льдом (0 °C). Охлаждающая жидкость прокачивается через блок измерительного датчика с помощью водяного насоса. Питание насоса осуществляется от источника постоянного напряжения 12 В.

Внешний вид установки ТЕРМОМЕТ-1 приведен на рисунке 1.

Рисунок 1 - Внешний вид установки ТЕРМОМЕТ-1

Программное обеспечение

Установка ТЕРМОМЕТ-1 оснащена программным обеспечением (ПО) с наименованием программы «iTERM110». Основные функции ПО: пересчет сигналов напряжения с датчика в единицы плотности теплового потока; хранение результатов измерений; вывод данных на дисплей ЭВМ (ноутбука).

Установка ТЕРМОМЕТ-1 имеет защиту встроенного ПО от преднамеренных и непреднамеренных изменений, реализованную изготовителем на этапе производства путем установки системы защиты микроконтроллера от чтения и записи. Вследствие установленной производителем защиты от чтения и записи провести идентификацию встроенного ПО способом кроме как при вскрытии прибора не представляется возможным.

Влияние встроенного ПО установки ТЕРМОМЕТ-1 на процесс измерения учтено при нормировании метрологических характеристик.

Идентификационные данные ΠO приведены в таблице 1. Таблица 1

Наимено- вание про- граммного обеспече- ния	Идентифика- ционное на- именование ПО	Номер версии (идентификаци- онный номер) ПО	Цифровой иден- тификатор ПО (контрольная сумма исполняе- мого кода)	Алгоритм вычисления цифрового идентификатора ПО
iTERM110	1.1.0	110FY	-	-

Программное обеспечение установки TEPMOMET-1 заложено в микросхеме atmega 32 (записывается в микроконтроллер) в процессе производства и защищено от доступа и изменения. Обновление программного обеспечения в процессе эксплуатации прибора не предусмотрено. Уровень защиты от непреднамеренных и преднамеренных изменений – С по МИ 3286-2010.

Метрологические и технические характеристики

Диапазон измерения плотности теплового потока, Bт/м ²	10 - 1	00
Относительная погрешность измерения, %	± 10	
Время установления рабочего режима после включения		
установки ТЕРМОМЕТ-1, мин.		10
Время непрерывной работы установки ТЕРМОМЕТ-1 не более, ч.		8
Мощность, потребляемая установкой ТЕРМОМЕТ-1, В-А, не более	•	15
Масса установки ТЕРМОМЕТ-1, кг, не более		5
Габаритные размеры, мм, не более:		
 измерительный блок - 600х420х230 		
- блок термостабилизации датчика - 360x240x220		
Средняя наработка на отказ не менее, ч.		1000
Средний срок службы не менее, лет	3	
Условия эксплуатации (нормальные):		
- температура окружающего воздуха, °С		20 ± 5
- относительная влажность воздуха, %		30-80
- атмосферное давление, кПа (мм рт.ст.)	84-106 (63	30-795)
· · · · · · · · · · · · · · · · ·		

Знак утверждения типа

Знак утверждения типа наносится на титульный лист руководства по эксплуатации установки TEPMOMET-1 методом компьютерной печати и на лицевую панель установки TEPMOMET-1 в виде наклейки.

Комплектность средства измерений

В комплект поставки входят:

- 1. Установка ТЕРМОМЕТ-1
- 1.1. Блок измерительный 1
- 1.2. Блок термостабилизации датчика 1
- 2. Персональный компьютер 1
- 3. Руководство по эксплуатации ИФВТ.405115.001 РЭ 1 экз.
- 4. Паспорт ИФВТ.405115.001 ПС 1 экз.
- 5. Методика поверки ИФВТ.405115.001 МП 1 экз.

Поверка

осуществляется по документу «Установка для определения плотности теплового потока при горении нанопорошков металлов TEPMOMET-1. Методика поверки ИФВТ.405115.001 МП», утвержденной ГЦИ СИ СНИИМ 29.07.2011г. с применением Теплометрической установки УТМ-1 и эталонного датчика теплового потока ЭДТП 0924.

Сведения о методиках (методах) измерений

Методы измерений изложены в руководстве по эксплуатации «Установка для определения плотности теплового потока при горении нанопорошков металлов TEPMOMET-1» Руководство по эксплуатации ИФВТ.405115.001 РЭ.

Нормативные документы, устанавливающие требования к установке для определения плотности теплового потока при горении нанопорошков металлов TEPMOMET-1

МИ 1855-88 Государственная поверочная схема измерения поверхностной плотности теплового потока

Методика поверки «Установка для определения плотности теплового потока при горении нанопорошков металлов TEPMOMET-1» $И\Phi BT.405115.001\ M\Pi$

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение работ по обеспечению безопасных условий и охраны труда.

Изготовитель: Национальный исследовательский Томский политехнический университет. Институт физики высоких технологий (ИФВТ ТПУ)

Адрес: ИФВТ ТПУ, 634050, г. Томск, пр. Ленина, 30

Тел.(3822) 41-90-91, факс: (3822) 41-85-60. E-mail: vvg@tpu.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Сибирский государственный ордена Трудового Красного Знамени научно-исследовательский институт метрологии» (ФГУП «СНИИМ»)

630004, г. Новосибирск, пр. Димитрова, 4.

Аттестат аккредитации № 30007-09.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Е.Р. Петросян

«___»____ 2011 г.

М.п.