

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.29.113.A № 43753

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

Комплекс измерений количества и физических параметров нефти при проведении учетных операций на площадке склада по хранению и перевалке нефти (пункт отпуска нефти "Молчаново")

ЗАВОДСКОЙ НОМЕР 01

ИЗГОТОВИТЕЛЬ

Открытое акционерное общество "Региональный деловой центр Томской области" (ОАО "РДЦ ТО"), г.Томск

РЕГИСТРАЦИОННЫЙ № 47667-11

ДОКУМЕНТ НА ПОВЕРКУ МП 47667-11

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **05 сентября 2011 г.** № **4747**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства		Е.Р. Петросян
	""	2011 г.

Серия СИ

№ 001701

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплекс измерений количества и физических параметров нефти при проведении учетных операций на площадке склада по хранению и перевалке нефти (пункт отпуска нефти «Молчаново»)

Назначение средства измерений

Комплекс измерений количества и физических параметров нефти при проведении учетных операций на площадке склада по хранению и перевалке нефти (пункт отпуска нефти «Молчаново») (далее - комплекс) предназначен для измерений массы брутто и массы нетто товарной нефти при проведении учетных операций.

Описание средства измерений

Комплекс реализует две схемы измерений нефти, основную и резервную. Принцип действия основной схемы основан на прямом методе динамических измерений. Принцип действия резервной схемы заключается в использовании косвенного метода измерений, основанного на гидростатическом принципе.

Измерение массы брутто нефти по основной схеме проводится с помощью блока измерительных линий (БИЛ), состоящего из одной рабочей и одной контрольной измерительной линии (ИЛ). Каждая ИЛ оснащена расходомером массовым (далее – РМ). Выходные сигналы РМ автоматически поступают в систему сбора и обработки информации (далее – СОИ), значения массовой концентрации хлористых солей, массовой доли механических примесей, массовой доли воды вводятся с клавиатуры в СОИ, которая вычисляет массу нетто нефти по реализованному в ней алгоритму, в соответствии с методикой измерений.

Измерение массы брутто нефти по резервной схеме проводится в резервуарах горизонтальных стальных вместимостью 50 м³ (РГС - 50). Выходные сигналы измерительных преобразователей — датчиков гидростатического давления, уровнемеров радарных, термопреобразователей сопротивления поступают в СОИ автоматически. СОИ производит расчет объема нефти в резервуаре на измеряемом уровне, с учетом градуировочной таблицы резервуара и гидростатического давления столба нефти в резервуаре, затем производит расчет массы брутто нефти. Значения массовой концентрации хлористых солей, массовой доли механических примесей, массовой доли воды вводятся с клавиатуры в СОИ, которая вычисляет массу нетто нефти по реализованному в ней алгоритму, в соответствии с методикой измерений.

СОИ включает в себя:

- программируемый логический контролер, установленный в шкафу автоматики;
- автоматизированное рабочее место оператора (APM оператора).

Комплекс выполняет следующие функции:

- автоматизированное измерение массы брутто нефти и вычисление массы нетто нефти;
- автоматическое измерение и контроль температуры, давления и уровня нефти в резервуарах;
 - контроль метрологических характеристик рабочего РМ по контрольному РМ.

Пломбирование компонентов комплекса от несанкционированного доступа осуществляется в соответствии с МИ 3002-2006.

Программное обеспечение

На APM оператора установлено системное (операционная система – Windows XP, пакет офисных приложений) и прикладное программное обеспечение (ПО) «ПромИС».

Структурная схема ПО «ПромИС» представлена на рисунке 1.

Модули метрологически не значимой части ПО «ПромИС»:

- Модуль «Задание параметров и управление оборудованием»
- Модуль «Отображение технологических параметров»
- Модуль «Формирование алармов системы»
- Модуль «Формирование архивов»
- Модуль «Формирование и печать отчетов»
- Модуль «Обработка событий системы по заданному расписанию»
- Модуль «Защита ПО»

Модули метрологически значимой части ПО «ПромИС»:

- Модуль «КМХ рабочего ПР по контрольному ПР»
- Модуль «Учет массы нефти в резервуарах гидростатическим методом»

Рисунок 1 – Структурная схема ПО «ПромИС»

ПО «ПромИС» обеспечивает:

- прием и отображение измерительной и технологической информации;
- отображение граничных значений диапазонов измеряемых величин;
- автоматическое построение, отображение и печать графиков изменения измеряемых физических величин (трендов);
- световую и звуковую сигнализацию при нарушениях технологического режима и аварийных ситуациях;
- регистрацию аварийных ситуаций и нарушений технологического режима в журнале событий;
- автоматизированное управление и технологический контроль за работой средств измерений и исполнительных механизмов;
- дистанционное управление по командам оператора электроприводами запорной и регулирующей арматуры;
- вычисление учетных параметров нефти за отчетный период (массы брутто нефти, средневзвешенных значений температуры, давления);
- вычисление массы балласта на основе введенных вручную данных из паспорта качества нефти (массовых долей воды и механических примесей, массовой концентрации хлористых солей);
 - вычисление массы нетто нефти;
 - формирование и печать отчетных документов;
 - архивирование данных;
 - отображение мнемосхем технологического оборудования;
 - защиту от несанкционированного доступа.

Идентификационные данные ПО «ПромИС» приведены в таблице 1.

Таблица 1

Наимено- вание ПО	Идентифика- ционное на- именование ПО	Номер версии (идентифика- ционный но- мер) ПО	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора ПО
ПромИС	ПромИС	1.0.1	Для модуля «КМХ рабочего РМ по контрольному РМ» (файл siknkmhax.ocx) 2abfaf9b50cbeefb200e3ef089fd5dac Для модуля «Учет массы нефти в резервуарах гидростатическим методом» (m_calcMass.ci) 49d305f22bda565860a2daaa81463d38	MD5

Уровень защиты ΠO от непреднамеренных и преднамеренных изменений по $M U = 3286-2010 \ \text{«С»}$.

Метрологические и технические характеристики

Диапазон измерений расхода нефти через комплекс, т/ч от 30 до 97.

Рабочие объемы резервуаров, м³

- PΓC-50 E1/1 51,656; - PΓC-50 E1/2 54,946.

Диапазон измерений давления нефти, МПа от 0,38 до 6,0. Диапазон измерений температуры нефти, °C от 5,0 до 16,0. Диапазон измерений вязкости нефти кинематической, мм 2 /с от 6,5 до 8,0. Диапазон измерений плотности нефти, кг/м 3 от 837,3 до 854,3.

Массовая доля воды не более, % 1,0. Массовая доля механических примесей не более, % 0,05. Массовая концентрация хлористых солей не более, мг/дм³ 900.

Режим работы комплекса периодический.

Рабочая среда нефть по ГОСТ P 51858.

Пределы допускаемых относительных погрешностей измерений массы брутто нефти:

- при прямом методе динамических измерений $\pm 0.25 \%$;

- при косвенном методе измерений, основанном на гидро-

статическом принципе, массы нефти до 120 т \pm 0,65 %.

Пределы допускаемых относительных погрешностей измерений массы нетто нефти:

- при прямом методе динамических измерений $\pm 0.35 \%$;

- при косвенном методе измерений, основанном на гидро-

статическом принципе, массы нефти до 120 т \pm 0,75 %.

Относительное отличие тестовых результатов вычислений ПО «ПромИС» от опорных при выполнении функций «Контроль метрологических характеристик» и «Вычисление массы нефти косвенным методом, основанном на гидростатическом принципе» не превышает 0,015 %.

Электропитание комплекса:

- напряжение питающей сети, В

измерительных цепей от 198 до 242; силовых цепей от 342 до 418; - частота питающей сети, Гц от 49 до 51.

Температура окружающей среды, °С:

- на площадке резервуаров от минус 40 до 50;

- в помещении операторной от 15 до 25.

Среднее время наработки на отказ комплекса, ч 12435.

Знак утверждения типа

наносится на титульный лист инструкции по эксплуатации комплекса типографским способом.

Комплектность средства измерений

В комплектность комплекса входят устройства и документация, представленные в таблице 2.

Таблица 2

№ п/п	Наименование СИ	Изготовитель	№ по Гос- реестру СИ	Кол- во
1.	Расходомер кориолисовый массовый OPTIMASS 7300 T 80	«KROHNE Messtechnik GmbH&Co.KG», Германия	34183-07	2
2.	Уровнемер радарный OPTIWAVE 7300 C	«KROHNE», Германия	29508-05	2

$N_{\underline{0}}$	Наименование СИ	Изготовитель	№ по Гос-	Кол-
п/п	Паименование СРГ	ИЗГОТОВИТСЛЬ	реестру СИ	ВО
3.	Термопреобразователь сопротивления ТСМ 9418	Омский опытный завод «Эта- лон», Россия	15196-06	2
4.	Датчик давления Метран-150TG	ЗАО «Промышленная группа Метран», г. Челябинск	32854-08	2
5.	Преобразователь давления измерительный АИР-20Ex/M2-ДГ	ООО НПП «Элемер», г.Менделеево	30402-05	2
6.	Контроллер программируемый логический Modicon M340	Фирма «Schneider Electric Industries SAS», Франция	38403-08	1
7.	Термометр лабораторный стеклянный ТЛС-4	ОАО «Стеклоприбор», Украина, г. Червонозаводское	32786-08	2
8.	Преобразователь температуры Метран-286-Ех	ЗАО «Промышленная группа Метран», г. Челябинск	23410-08	1
9.	Резервуар РГС-50 Е1/1	п. Красный Яр, Новосибир- ская обл	-	1
10.	Резервуар РГС-50 Е1/2	п. Красный Яр, Новосибир- ская обл	-	1
11.	АРМ оператора	-	-	1
12.	Инструкция по эксплуатации комплекса	-	-	1
13.	Методика поверки комплекса	-	-	1
14.	Методика измерений массы нефти комплексом	-	-	1
15.	Техническая документация на компоненты комплекса	-	-	

Примечание: Допускается применять другие средства измерений и оборудование, допущенные к применению в установленном порядке, с аналогичными или лучшими метрологическими и техническими характеристиками

Поверка

осуществляется по документу МП 47667-11 «Инструкция. ГСИ. Комплекс измерений количества и физических параметров нефти при проведении учетных операций на площадке склада по хранению и перевалке нефти (пункт отпуска нефти «Молчаново»)». Методика поверки», утвержденному руководителем ГЦИ СИ ФГУ «Томский ЦСМ» 30.03.2011 г.

Основные средства поверки для массовых расходомеров – эталонные передвижные поверочные установки, оснащенные эталонными расходомерами-счетчиками Micro Motion фирмы «Emerson Process Management, Fisher Rosemount» типов:

- установка поверки мобильная эталонная СИКН «МЭУ-100-4,0», диапазон воспроизводимых массовых расходов от 20 до 420 т/ч, предел допускаемой основной относительной погрешности измерений массового расхода не более 0.11%;
- установка эталонная массоизмерительная мобильная ЭММУ, диапазон массовых расходов от 4,0 до 400 т/ч, предел допускаемой основной относительной погрешности измерений массы жидкости не более 0,11 %;
- установка поверочная передвижная на базе массомеров УППМ, рабочий диапазон расхода от 22 до 320 т/ч, пределы допускаемой относительной погрешности \pm 0,11 %.

Сведения о методиках (методах) измерений

Методика измерений приведена в документе ФР.1.29.2010.06935 «Рекомендация. ГСИ. Масса нефти. Методика выполнения измерений комплексом измерений количества и физических параметров нефти при проведении учетных операций на площадке склада по хранению и перевалке нефти (пункт отпуска нефти «Молчаново»)».

Нормативные и технические документы, устанавливающие требования к комплексу измерений количества и физических параметров нефти при проведении учетных операций на площадке склада по хранению и перевалке нефти (пункт отпуска нефти «Молчаново»)

- 1. ГОСТ Р 8.595–2004 ГСИ. Масса нефти и нефтепродуктов. Общие требования к методикам выполнения измерений.
- 2. «Рекомендации по определению массы нефти при учетных операциях с применением систем измерений количества и показателей качества нефти», утверждены приказом Минпромэнерго № 69 от 31.03.2005 г.
- 3. Проектная документация 01-01/09-00-00 «Автоматизация процесса учета нефти пункта отпуска нефти площадка склада по хранению и перевалке нефти, сдаваемой ОАО «Центрсибнефтепровод» на ПН «Молчаново», Гришинский тракт, 28, принадлежащего ОАО «Региональный деловой центр Томской области». Техническое перевооружение».
- 4. «Инструкция. ГСИ. Комплекс измерений количества и физических параметров нефти при проведении учетных операций на площадке склада по хранению и перевалке нефти (пункт отпуска нефти «Молчаново»)». Методика поверки».
- 5. МИ 3002-2006 Рекомендация. ГСИ. Правила пломбирования и клеймения средств измерения и оборудования, применяемых в составе систем измерений количества и показателей качества нефти и поверочных установок.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Комплекс применяется при проведении торговых и товарообменных операций.

Изготовитель

Открытое акционерное общество «Региональный деловой центр Томской области» (ОАО «РДЦ ТО»).

Юридический адрес: 634021, Россия, г. Томск, ул. Герцена, 63.

Почтовый адрес: 634021, Россия, г. Томск, ул. Герцена, 63.

Телефон: (8 3822) 52-24-17, тел/факс (8 3822) 52-23-69.

E-mail: office@rdc.tomsk.ru.

Испытательный центр

ГЦИ СИ Федерального государственного учреждения «Томский центр стандартизации, метрологии и сертификации» (ФГУ «Томский ЦСМ»).

Юридический адрес: Россия, 634012, г. Томск, ул. Косарева, д.17-а

Телефон: (3822) 55-44-86, факс (3822) 56-19-61, 55-36-76 E-mail: tomsk@tcsms.tomsk.ru, Интернет http://tomskcsm.ru.

Регистрационный номер 30113-08.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

	2011r
>>	ZULIT

Е.Р. Петросян