

## ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

# СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.29.006.A № 43522

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

Оперативная система измерений количества и показателей качества нефти

ООО "СК "РУСВЬЕТПЕТРО"

ЗАВОДСКОЙ НОМЕР 01

ИЗГОТОВИТЕЛЬ
ООО "ИМС Индастриз", г. Москва

РЕГИСТРАЦИОННЫЙ № 47468-11

ДОКУМЕНТ НА ПОВЕРКУ МП 47468-11

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **11 августа 2011 г.** № **4397** 

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

| Заместитель Руководителя |
|--------------------------|
| Федерального агентства   |

В.Н.Крутиков

"...... 2011 г.

Серия СИ

№ 001518

### ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Оперативная система измерений количества и показателей качества нефти OOO «СК «РУСВЬЕТПЕТРО»

#### Назначение средства измерений

Оперативная система измерений количества и показателей качества нефти ООО «СК «РУСВЬЕТПЕТРО» (далее – система) предназначена для автоматических измерений массы брутто и показателей качества нефти, перекачиваемой с площадки ЦПС по двум направлениям: южное – на ПСП «Мусюршор» и северное – на ПСП «Варандей».

#### Описание средства измерений

Принцип действия системы основан на использовании прямого метода динамических измерений массы брутто нефти с помощью преобразователей массового расхода. Выходные электрические сигналы с преобразователей массового расхода поступают на соответствующие входы измерительно-вычислительного комплекса, который преобразует их и вычисляет массу брутто нефти по реализованному в нем алгоритму.

Система представляет собой единичный экземпляр измерительной системы целевого назначения, спроектированной для конкретного объекта и состоящей из входного и выходного коллекторов, блока фильтров, блока измерительных линий, блока измерений показателей качества нефти (далее – БИК), блока подключения передвижной поверочной установки (далее –ППУ), системы обработки информации и системы дренажа. Монтаж и наладка системы осуществлены непосредственно на объекте эксплуатации в соответствии с проектной и эксплуатационной документацией на систему и ее компоненты.

Система состоит из трех\* (двух рабочих, одного резервного) измерительных каналов массы нефти, а также измерительных каналов плотности, температуры, давления, разности давления, объемной доли воды в нефти, объемного расхода в БИК, в которые входят следующие средства измерений:

- счетчики-расходомеры массовые Micro Motion модели CMF 300 в комплекте с измерительными преобразователями 2700 (далее CPM), Госреестр № 13425-06;
- преобразователь плотности жидкости измерительный модели 7835 (далее  $\Pi\Pi$ ), Госреестр № 15644-06;
  - преобразователи давления измерительные 3051, Госреестр № 14061-10;
- термопреобразователи сопротивления платиновые серии 65, Госреестр № 22257-05, с
   преобразователями измерительными 644, Госреестр № 14683-09;
  - влагомер нефти поточный УДВН-1пм исполнения т2, Госреестр №14557-05;
  - расходомер UFM 3030 модификации UFM 3030K, Госреестр № 32562-09;
- контроллеры измерительно-вычислительные OMNI 6000, Госреестр № 15066-09, свидетельство ФГУП «ВНИИМ им. Д.И. Менделеева» об аттестации алгоритма и программного обеспечения средств измерений № 2301-05м-2009 от 15 октября 2009 г.;
  - автоматизированное рабочее место инженера.
  - В состав системы входят показывающие средства измерений:
  - манометры показывающие для точных измерений МПТИ, Госреестр № 26803-06;
  - термометры ртутные стеклянные лабораторные ТЛ-4 № 2 и № 3, Госреестр № 303-91.

Система обеспечивает выполнение следующих основных функций:

<sup>\*</sup> При подключении четырех дополнительных измерительных линий число измерительных каналов массы брутто нефти увеличится до семи (пяти рабочих, двух резервных).

- автоматическое измерение массы брутто нефти прямым методом динамических измерений в рабочем диапазоне расхода, температуры, давления и плотности нефти;
- измерение давления и температуры нефти автоматическое и с помощью показывающих средств измерений давления и температуры нефти соответственно;
  - проведение поверки и КМХ СРМ с применением ППУ или ПУ;
- автоматический и ручной отбор проб согласно ГОСТ 2517-85 «ГСИ. Нефть и нефтепродукты. Методы отбора проб»;
- автоматический контроль параметров измеряемого потока, их индикацию и сигнализацию нарушений установленных границ;
- регистрацию и хранение результатов измерений, формирование отчетов, протоколов, актов;
  - защиту информации от несанкционированного доступа программными средствами.

Программное обеспечение (ПО) системы (контроллеры измерительно-вычислительные ОМNІ 6000, Госреестр № 15066-09, контроллер программируемый логический РLС Modicon, Госреестр № 18649-07, и операторские станции на базе ПО «RATE APM оператора УУН», свидетельство об аттестации алгоритмов вычислений № 802-08) обеспечивает реализацию функций системы. ПО системы разделено на метрологически значимую и метрологически незначимую части. Первая хранит все процедуры, функции и подпрограммы, осуществляющие регистрацию, обработку, хранение, отображение и передачу результатов измерений параметров технологического процесса, а также защиту и идентификацию ПО системы. Вторая хранит все библиотеки, процедуры и подпрограммы взаимодействия с операционной системой и периферийными устройствами (не связанные с измерениями параметров технологического процесса). Наименования ПО и идентификационные данные указаны в таблице 1.

Таблица1 – Идентификационные данные ПО

| Наименование<br>ПО                                                 | Идентификационное на-<br>именование ПО                                                                                                                                    | Номер версии (идентифика-<br>ционный но-<br>мер) ПО | Цифровой идентификатор ПО (контрольная сумма исполняемого кода)                  | Алгоритм вычисления цифрового идентификатора ПО                                                                   |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| ПО контроллера измерительно-вычислительного ОМNI 6000 (основной)   | Алгоритмы вычислений и программа обработки результатов измерений объема и массы нефти и нефтепродуктов, определения метрологических характеристик преобразователя расхода | 24.75.01                                            | EBE1                                                                             | По ГОСТ Р 34.11- 94 «Информаци- онная технология. Криптографиче- ская защита ин- формации. Функ- ция хэширования» |
| ПО контроллера измерительно- вычислительного ОМNI 6000 (резервный) | Алгоритмы вычислений и программа обработки результатов измерений объема и массы нефти и нефтепродуктов, определения метрологических характеристик преобразователя расхода | 24.75.01                                            | EBE1                                                                             | По ГОСТ Р 34.11                                                                                                   |
| ПО «RATE APM оператора УУН»                                        | «Rate APM оператора УУН»<br>РУУН 2.1-07 АВ                                                                                                                                | 1.5.0.1                                             | 7cc3c6f61<br>e77643578b3dd<br>b1b5079a0b7e<br>f1d5921e5789ffd40e<br>261c6718ecce | По ГОСТ Р 34.11                                                                                                   |

Защита ПО системы от непреднамеренных и преднамеренных изменений и обеспечение его соответствия утвержденному типу, осуществляется путем: разделения, идентификации, защиты от несанкционированного доступа.

Идентификация ПО системы осуществляется путем отображения на мониторе операторской станций управления структуры идентификационных данных. Часть этой структуры, относящаяся к идентификации метрологически значимой части ПО системы, представляет собой хэшсумму (контрольную сумму) по значимым частям.

ПО системы защищено от несанкционированного доступа, изменения алгоритмов и установленных параметров, путем введения логина и пароля, ведения журнала событий, доступного только для чтения. Доступ к метрологически значимой части ПО системы для пользователя закрыт. При изменении установленных параметров (исходных данных) в ПО системы обеспечивается подтверждение изменений, проверка изменений на соответствие требованиям реализованных алгоритмов, при этом сообщения о событиях (изменениях) записывается в журнал событий, доступный только для чтения. Данные, содержащие результаты измерений, защищены от любых искажений путем кодирования. Уровень защиты ПО системы от непреднамеренных и преднамеренных изменений соответствует уровню защиты «С». И МИ 3286-2010 «Рекомендация. Поверка защиты программного обеспечения и определение ее уровня при испытаниях средств измерений в целях утверждения типа».

#### Метрологические и технические характеристики

Основные метрологические и технические характеристики системы приведены в таблице 2. Т а б л и ц а 2 — Основные метрологические и технические характеристики системы

| Наименование характеристики                                    | Значение характеристики               |
|----------------------------------------------------------------|---------------------------------------|
| Измеряемая среда                                               | Нефть по ГОСТ Р<br>51858-2002 «Нефть. |
|                                                                | Общие технические                     |
|                                                                | условия»                              |
| Рабочий диапазон расхода, т/ч                                  | от 155 до 250                         |
| Максимальный расход при подключении четырех дополни-           |                                       |
| тельных измерительных линий, т/ч, не более                     | 603                                   |
| Количество измерительных линий, шт.                            | 3 (2 рабочих,                         |
|                                                                | 1 резервная)                          |
| Количество измерительных линий при подключении четырех         | 7 (5 рабочих,                         |
| дополнительных измерительных линий, т/ч, не более              | 2 резервных)                          |
| Рабочий диапазон плотности измеряемой среды, кг/м <sup>3</sup> | От 862 до 892,2                       |
| Верхний предел диапазона давления измеряемой среды, МПа        | 5,95                                  |
| Рабочий диапазон температуры измеряемой среды, °C              | От 45 до 70                           |
| Массовая доля воды, %, не более                                | 0,5                                   |
| Пределы допускаемой абсолютной погрешности измерений           |                                       |
| плотности измеряемой среды, кг/м <sup>3</sup>                  | ± 0,3                                 |
| Пределы допускаемой основной абсолютной погрешности из-        |                                       |
| мерений объемной доли воды в измеряемой среде, %               | ± 0,05                                |
| Пределы допускаемой абсолютной погрешности средств изме-       |                                       |
| рений температуры измеряемой среды, °С                         | ± 0,2                                 |
| Пределы допускаемой приведенной погрешности измерений          |                                       |
| давления измеряемой среды, %                                   | ± 0,5                                 |

Окончание таблицы 2 – Основные метрологические и технические характеристики системы

| Наименование характеристики                             | Значение характеристики   |  |  |  |
|---------------------------------------------------------|---------------------------|--|--|--|
| Пределы допускаемой относительной погрешности изме-     |                           |  |  |  |
| рений массы брутто нефти, %                             | ± 0,25                    |  |  |  |
| Средний срок службы системы, не менее                   | 8 лет                     |  |  |  |
| Напряжение питания, В                                   | 380 (3-х фазное, 50 Гц)   |  |  |  |
|                                                         | 220±22 (однофазное, 50Гц) |  |  |  |
|                                                         | 24 (переменный ток)       |  |  |  |
| Климатические условия эксплуатации системы:             |                           |  |  |  |
| – температура окружающего воздуха, °C                   | От минус 53 до 34         |  |  |  |
| – температура воздуха в помещениях, где установлено     |                           |  |  |  |
| оборудование системы, °С, не менее                      | 5                         |  |  |  |
| – относительная влажность воздуха в помещениях, где ус- |                           |  |  |  |
| тановлено оборудование системы, %                       | От 45 до 80               |  |  |  |
| – относительная влажность окружающего воздуха, %        | От 45 до 80               |  |  |  |
| <ul><li>– атмосферное давление, кПа</li></ul>           | От 84 до 106              |  |  |  |

#### Знак утверждения типа

наносится справа в нижней части титульного листа инструкции по эксплуатации системы типографским способом. При этом указывают номер свидетельства об утверждении типа системы и дату его выдачи.

#### Комплектность средства измерений

- оперативная система измерений количества и показателей качества нефти ООО «СК «РУСВЬЕТПЕТРО», 1 шт., заводской № 01;
  - инструкция по эксплуатации системы;
- инструкция «ГСИ. Оперативная система измерений количества и показателей качества нефти ООО «СК «РУСВЬЕТПЕТРО». Методика поверки».

#### Поверка

осуществляется по документу «Инструкция. ГСИ. Оперативная система измерений количества и показателей качества нефти ООО «СК «РУСВЬЕТПЕТРО». Методика поверки», утвержденной  $\Phi$ ГУП «ВНИИР» в ноябре 2010 г.

#### Основные средства поверки:

- ППУ с диапазоном измерений расхода измеряемой среды, позволяющим проводить поверку СРМ в их рабочем диапазоне массового расхода нефти, пределы допускаемой относительной погрешности  $\pm$  0,05 % или  $\pm$  0,1 %;
- ПУ с диапазоном измерений объемного расхода измеряемой среды от 0,473 до 568 м $^3$ /ч, пределами допускаемой относительной погрешности  $\pm$  0,05 %;
- $-\Pi\Pi$  с диапазоном измерений от 300 до 1100 кг/м<sup>3</sup> и пределами допускаемой абсолютной погрешности  $\pm$  0,3 кг/м<sup>3</sup>.
- контроллер измерительно-вычислительный OMNI 6000, пределы допускаемой относительной погрешности преобразования входных электрических сигналов в значения массы продукта  $\pm$  0,005 %;
- устройство для поверки вторичной измерительной аппаратуры узлов учета нефти и нефтепродуктов УПВА, пределы допускаемой абсолютной погрешности воспроизведений силы постоянного тока  $\pm$  3 мкА в диапазоне от 0,5 до 20 мА, пределы допускаемой относительной погрешности воспроизведений частоты и периода следования импульсов  $\pm$  5×10<sup>-4</sup> в диапазоне от

- 0,1 до 15000 Гц, пределы допускаемой абсолютной погрешности воспроизведений количества импульсов в пачке  $\pm 2$  имп. в диапазоне от 20 до  $5 \times 10^8$  имп.;
- установка пикнометрическая с пределами допускаемой абсолютной погрешности измерений плотности  $\pm 0.10$  кг/м $^3$  в диапазоне плотности от 600 до 1100 кг/м $^3$ ;
- калибратор температуры модели ATC 156 B, диапазон воспроизводимых температур от минус 40 °C до 155 °C, пределы допускаемой абсолютной погрешности  $\pm$  0,04 °C;
- калибратор многофункциональный модели ASC300-R: внешний модуль давления нижний предел воспроизведения давления 0 бар, верхний предел воспроизведения давления 1,03424 бар (15 psi), пределы допускаемой основной погрешности  $\pm$  0,025% от верхнего предела измерений; внешний модуль давления нижний предел воспроизведения давления 0 бар, верхний предел воспроизведения давления 206 бар, пределы допускаемой основной погрешности  $\pm$  0,025% от верхнего предела измерений.

Допускается использование других средств поверки с метрологическими характеристиками, не уступающими указанным.

#### Сведения о методиках (методах) измерений

Для измерений массы нефти применяют прямой метод динамических измерений массы брутто нефти, реализованный в инструкции «ГСИ. Масса нефти. Методика выполнения измерений оперативной системой измерений количества и показателей качества нефти ООО «СК «РУСВЬ-ЕТПЕТРО» (свидетельство об аттестации МВИ № 2550-05-2010 от 08 июня 2010 г.).

Нормативные и технические документы, устанавливающие требования к оперативной системе измерений количества и показателей качества нефти ООО «СК «РУСВЬЕТПЕТРО»

- 1 ГОСТ 8.510-2002 «ГСИ. Государственная поверочная схема для средств измерений объема и массы жидкости».
- 2 Техническая документация 0375.00.00.000 «Оперативная система измерений количества и показателей качества нефти ООО «СК «РУСВЬЕТПЕТРО».

**Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений** — осуществление торговли и товарообменных операций.

#### Изготовитель

ООО «ИМС Индастриз»

Юридический адрес: 117312, г. Москва, ул. Вавилова, д. 47А Почтовый адрес: 117312, г. Москва, ул. Вавилова, д. 47А

Тел.: (495) 221-10-50, факс: (495) 221-10-51

#### Сведения об испытательном центре

Государственный центр испытаний средств измерений (ГЦИ СИ) Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт расходометрии» (ФГУП «ВНИИР»)

Юридический адрес: Россия, РТ, г. Казань, ул. 2-ая Азинская, д. 7 А Тел.: 8 (843) 272-70-62, факс: 8 (843) 272-00-32, e-mail: vniirpr@bk.ru Регистрационный номер 30006-09.