

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.29.004.A № 42913

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Система измерительно-вычислительная "Автоматизированная информационно-измерительная система диспетчеризации учета энергоресурсов (АИИСДУЭР) муниципального предприятия "Салехардэнерго"

ЗАВОДСКОЙ НОМЕР 001/2010

ИЗГОТОВИТЕЛЬ
ООО МНТЦ "БИАТ", г.Москва

РЕГИСТРАЦИОННЫЙ № 47017-11

ДОКУМЕНТ НА ПОВЕРКУ 11483830.250.МП

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 4 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 16 июня 2011 г. № 2870

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя		Е.Р.Петросян
Федерального агентства		
		2011 г.

№ 000913

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерительно-вычислительная «Автоматизированная информационноизмерительная система диспетчеризации учета энергоресурсов (АИИСДУЭР) муниципального предприятия «Салехардэнерго»

Назначение средства измерений

измерительно-вычислительная «Автоматизированная информационноизмерительная система диспетчеризации учета энергоресурсов» (АИИСДУЭР) муниципального предприятия «Салехардэнерго» (далее по тексту - система) предназначена для измерений температуры и избыточного давления горячей и холодной воды, массы, объема и тепловой энергии воды, активной и реактивной электрической энергии на заданном отрезке времени с целью коммерческого и технического учета тепловой и электрической энергии и энергоносителей, потреблённых или отпущенных объектами МП «Салехардэнерго». Система реализована на базе сертифицированной системы измерительно-вычислительной АСУТ-601, зарегистрированной в Госреестре под № 20435-09.

Описание средства измерений

В состав АИИСДУЭР входят четыре подсистемы:

- подсистема учета тепловой энергии и теплоносителя (ПУТЭиТ),
- подсистема учета воды (ПУВ),
- подсистема учета электроэнергии (ПУЭЭ),
- подсистема «Центр сбора информации» (ПЦСИ).

Подсистема ПУТЭиТ предназначена для автоматизированного учета отпускаемой тепловой энергии и массы сетевой и подпиточной воды и контроля учетных параметров в источниках тепла Предприятия «Котельные» - котельных №№ 5, 6, 7, 8, 10, 11, 13, 14, 16, 21, 22, 25, 28, 29, 30, 32, 34, 35, 36, УР-1, УР-2, УР-3, котельной Администрации, ЦТП (ЦТП-1) и Пиковой котельной, включающих:

- магистрали сетевой воды в тепловую сеть 28 (трубопроводы сетевой воды 56);
- трубопроводы подпитки

22.

Подсистема ПУВ предназначена для автоматизированного учета расхода воды принятой из артезианских скважин и отпускаемой городу на объектах Предприятия «Водоканал», включающих:

• артезианские скважины

34:

• трубопроводы (водоводы) холодной воды

13.

Подсистема ПУЭЭ предназначена для автоматизированного учета потребляемой электроэнергии на объектах:

• Предприятия «Котельные»

54 электросчётчика, в том числе:

13 электросчётчиков, в том числе:

- подключаемые через трансформаторы

52 электросчётчика;

- прямого включения

2 электросчётчика;

• Предприятия «Водоканал»

11 электросчётчиков;

-подключаемые через трансформаторы

- прямого включения

2 электросчётчика;

• Абоненты (торговые предприятия)

24 электросчётчика прямого включения.

Подсистема ПЦСИ предназначена для автоматизированного диспетчерского учета энергоресурсов: тепловой энергии, электрической энергии, сетевой, подпиточной и холодной воды.

• Расход, температура и давление, тепловая энергии и масса (объём) воды измеряются теплосчётчиками ТСК-5 (Госреестр № 20196-06) и ТСК-7 (Госреестр № 23194-07).

• Потреблённая или отпущенная электроэнергия измеряется электросчётчиками: СЭТ-4ТМ.02.2 (Госреестр № 20175-01), СЕЗ01 R33 043 (Госреестр № 34048-08), Меркурий 230 ART (Госреестр № 23345-07) прямого включения и с применением измерительных трансформаторов тока. В АИИСДУЭР допустима замена указанных выше средств измерений на другие типы с метрологическими характеристиками не хуже указанных.

Из теплосчетчиков через устройства передачи данных (GSM-модем) по интерфейсным линиям связи (RS232, RS485, Ethernet) информация о параметрах теплоносителей и результатах учёта передаётся в цифровом коде в сервер АСУТ-601.

При выполнении измерений должны выполняться требования технической документации на применяемые в системе средства измерений к значениям влияющих параметров окружающей среды, в том числе:

- температуры окружающего воздуха;
- относительной влажности (без капельной влаги);
- атмосферного давления;
- напряжения питания;
- концентрации паров кислот, щелочей, примесей агрессивных газов в воздухе помещений;
 - запыленности воздуха;
 - напряженности внешних магнитных и электромагнитных полей;
 - вибрации.

Программное обеспечение

В состав программного обеспечения сервера АСУТ-601 входят программы, обеспечивающие режим реального времени и управление базой данных, средства генерации базы данных MS SQL Server 2005 или 2008.

В сервере АСУТ-601 формируются следующие архивы:

- Текущие данные 10 дней;
- Часовые данных 180 дней;
- Суточные данные 3 года;

В системе существуют два вида интерфейсов между специалистами и системой. Локальный доступ к серверу ориентирован на системных специалистов и позволяет:

- 1) Осуществлять обновление программного обеспечения;
- 2) Вести обслуживание базы данных;
- 3) Объявлять новые узлы учёта и значения их параметров.

Вторым видом доступа является сетевой интерфейс. Он позволяет пользователям системы (руководству энергосистемы, отделу продаж, производственно-техническому отделу и системным специалистам) иметь доступ ко всем видам документов, формируемых системой.

В системе предусмотрена защита от несанкционированного доступа к данным и сохранность данных при отключении электропитания.

Система позволяет проводить периодическую поверку отдельных измерительных каналов одновременно с нормальной эксплуатацией других каналов.

Косвенные измерения тепловой энергии производятся в соответствии с требованиями "Правил учета тепловой энергии и теплоносителя" (М., 1995)

Идентификационные данные программного обеспечения АСУТ-601 системы АИИС-ДУЭР приведены в таблице 1.

Идентификационные данные программного обеспечения АСУТ-601 системы АИИСДУЭР

Наименование компонентов программного обеспечения вычислителя АСУТ-601	Идентификаци- онное наимено- вание программ- ного обеспечения	Номер версии (иденти-фикационный номер программного обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора программного обеспечения
Программа опроса	Auto.exe	1.0.0.3	C4F6AA50	
Основная библиотека программы	ClassLibrary1.dll	1.1.0.1	04CEEC3F	
Поддержка электросчетчиков типа СЭТ-4ТМ	NZiF.dll	1.2.0.2	F94B4DAB	
Поддержка электросчетчиков типа Меркурий-230	Incotex.dll	1.0.0.2	C576D983	CRC32
Поддержка электросчетчиков типа CE-301	Energomera.dll	1.1.0.1	26B3B184	
Поддержка тепловычис- лителей типа ВКТ-5 и ВКТ-7	Teplocom.dll	1.0.0.2	BDAE89BE	

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений в соответствии с МИ 3286-2010 - «С»

Метрологические и технические характеристики

Требования к метрологическим характеристикам СИ, входящих в состав системы, определены в табл. 2.

Технические характеристики системы:

Количество теплосчетчиков:

TCK-5 - 24, TCK-7 - 10.

3.

Таблица 2

Количество электросчетчиков: СЭТ-4ТМ - 23, СЕЗ01 - 19, Меркурий 230 – 49.

Количество трансформаторов измерительных: Т-0,66 - 28, ТШП-0,66 - 23,

3/600 - 4, ТСН6 - 3, ТНШЛ-0,66 - 1, ТТИ-А - 1, ТОП-0,66 - 1.

Электрическая мощность, потребляемая системой, кВт, не более

Метрологические характеристики системы

тистрологические характеристики системы			
Наименование нормируемой характеристики	Предел допускаемой погрешности		
Аборнотира пограничести измераний температури темперационала в			
Абсолютная погрешность измерений температуры теплоносителя в	$\pm (0.6 + 0.004 t),$		
диапазоне от 1 до 200 °C, ° С	где t – температура		
	учетной среды		
Относительная погрешность измерений избыточного давления тепло-	±2,0		
носителя в диапазоне от 0,2 до 2,5 МПа, %			
Относительная погрешность измерений массового расхода и массы			
воды в диапазоне от верхнего предела измерения расходомера до			
расхода, при котором достигается относительная погрешность, ука-	±2,0		
занная в следующем столбце, %	±2,0		
Относительная погрешность измерений тепловой энергии горячей во-			
ды % при разности температур в подающем и обратном трубопроводах			
от 10 до 20 °C	±5,0		
более 20 °C	±4,0		

Относительная погрешность измерений текущего времени за время	±0,1
не менее 1 мин, %	_0,1
Относительная погрешность измерения количества импульсов, %	±0,1
Относительная погрешность измерения электроэнергии в рабочих ус-	
ловиях при однофазной и симметричной многофазной нагрузке, %	
при активной нагрузке	
ток от $0.01~I_{\text{ном}}$ до $0.05~I_{\text{ном}}$	±1,0
ток от $0.05~{\rm I_{hom}}$ до $~{\rm I_{makc}}$	±0,5
при индуктивной нагрузке, коэффициент мощности 0,5	
ток от $0.02~\rm{I_{Hom}}$ до $~0.1~\rm{I_{Hom}}$	$\pm 1,0$
ток от $0,1 I_{\text{ном}}$ до $ I_{\text{макс}}$	±0,6
при емкостной нагрузке, коэффициент мощности 0,8	,
ток от $0.02~\rm{I_{Hom}}$ до $~0.1~\rm{I_{Hom}}$	±1,0
ток от $0,1 I_{\text{ном}}$ до $ I_{\text{макс},}$	±0,6
$I_{\text{ном}}$ – номинальный ток, $I_{\text{макс}}$ – максимальный ток по паспорту счетчи-	_=,0
ка	

Знак утверждения типа

наносится на титульный лист паспорта системы.

Комплектность средства измерений

Комплектность поставки системы приведена в таблице 3.

Таблица 3

Наименование	Кол-во	
Вычислитель АСУТ-601		1
Теплосчетчики: ТСК-5		23
TCK-7		10
Счётчики электрической энергии: СЭТ-4ТМ		23
CE301		24
Меркур	ий 230	44
Трансформаторы тока измерительные: Т-0,66		28
ТШ	П-0,66	23
CT3	/600	4
TCH	[6;	3
THL	ИЛ-0,66	2
ТШ-	0,66, ТТИ-А, ТОП-0,66	по 1
Эксплуатационные документы		1
Ведомость запасных частей		1
Комплект запасных частей		1

Поверка

осуществляется по документу 11483830.250.МП «Система измерительно-вычислительная «Автоматизированная информационно-измерительная система диспетчеризации учета энергоресурсов (АИИСДУЭР) муниципального предприятия «Салехардэнерго». Методика поверки», утвержденному ФГУП «ВНИИМС» 09.12.2010 г.

Средства поверки:

- секундомер механический СОПпр-2а-2-010, цена деления 0,2 с;
- средства поверки, указанные в методиках поверки входящих в состав системы средств измерений: теплосчётчиков ТСК-5 (Госреестр № 20196-06) и ТСК-7 (Госреестр № 23194-07), электросчётчиков СЭТ-4ТМ.02.2 (Госреестр № 20175-01), СЕЗ01 R33 043 (Госреестр № 34048-08), Меркурий 230 ART (Госреестр № 23345-07); трансформаторов тока измерительных Т-0,66 (Госреестр № 36382-07), ТШП-0,66 (Госреестр № 37610-08), СТЗ/600 (Госреестр

№ 26070-06), ТСН6 (Госреестр № 26100-03), ТТИ-А (Госреестр № 28139-07), ТШ-0,66 (Госреестр № 22657-07), ТОП-0,66 (Госреестр № 44142-10), ТНШЛ-0,66 (Госреестр № 1673-07).

Сведения о методиках измерений

приведены в документе «Система измерительно-вычислительная «Автоматизированная информационно-измерительная система диспетчеризации учета энергоресурсов (АИИСДУЭР) муниципального предприятия «Салехардэнерго». Методика измерений. 11483830.250.МИ, аттестованном ФГУП «ВНИИМС» 13.12.2010 г.

Нормативные и технические документы, устанавливающие требования к системе измерительно-вычислительная «Автоматизированная информационно-измерительная система диспетчеризации учета энергоресурсов (АИИСДУЭР) муниципального предприятия «Салехардэнерго

- 1 ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.
- 2 Правила учёта тепловой энергии и теплоносителя. Приложение к письму Министерство топлива и энергетики Российской Федерации от 12.09.95 г. № ВК-4936.
- 3 Правила учета электрической энергии. Зарегистрированы в Министерстве юстиции РФ 24.10.1996 г. Регистрационный N 1182.
- 4. ТУ 4218 012 11483830 2010. Система измерительно-вычислительная «Автоматизированная информационно-измерительная система диспетчеризации учета энергоресурсов муниципального предприятия «Салехардэнерго» (АИИСДУЭР). Технические условия.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

М.п.

- при осуществлении торговли и товарообменных операций.

Изготовитель

ООО МНТЦ «БИАТ», г. Москва 105275, г. Москва, пр. Будённого, 31, офис 151, тел./факс: (495)- 365-40-79, 366-10-01, E-mail: biat@biat.com.ru,

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМС» Регистрационный номер 30004-08. 119361, Москва, Озерная, 46, телефон (495) 437 5577, факс (495) 437 5666, электронная почта office@vniims.ru,

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

E	E.P.	Петросян		
«	>>		2011	Γ.