Приложение к свидетельству № об утверждении типа средств измерений единичного производства

всего листов 6

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

ЖАГЛАСОВАНО Руководитель ГЦИ СИ Государс Замий генерального директора ФГУ «Востест-Москва» А.С. Евдокимов ошилья 2010 г.

Система автоматизированная информацион Внесена но-измерительная коммерческого учета электрической энергии АИИС КУЭ -"ПС 500 кВ Удмуртская"

Государственный средств измерений Регистрационный номер № 46469-10

Изготовлена по технической документации ООО «Энсис Технологии», г. Москва. Заводской номер 07239.

НАЗНАЧЕНИЕ

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии АИИС КУЭ - "ПС 500 кВ Удмуртская" (далее по тексту - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, для осуществления эффективного автоматизированного сбора, обработки, хранения, отображения информации по всем расчетным точкам учета и передачи ее в ОАО «ATC», ОАО «СО ЕЭС», ОАО «ФСК-ЕЭС» в рамках согласованного регламента.

Полученные данные и результаты измерений могут использоваться для коммерческих расчетов и оперативного управления энергопотреблением.

ОПИСАНИЕ

АИИС состоит из измерительных каналов (далее ИК), включающих следующие средства измерений:

- измерительные трансформаторы тока (ТТ) по ГОСТ 7746-2001;
- измерительные трансформаторы напряжения (ТН) по ГОСТ 1983-2001;
- многофункциональные счетчики электрической энергии.

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- периодический (1 раз в сутки) и /или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- хранение результатов измерений в специализированной Удмуртскаяе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование Удмуртская данных) и от несанкционированного доступа;
- передача в организации-участники оптового рынка электроэнергии результатов измерений;
- предоставление по запросу контрольного доступа к результатам измерений, данных о состоянии объектов и средств измерений со стороны сервера организаций - участников оптового рынка электроэнергии;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);

- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
- конфигурирование и настройка параметров АИИС КУЭ;
- ведение системы единого времени в АИИС КУЭ (коррекция времени).

Принцип действия:

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации, которые усредняются за 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение вычисленных мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на входы УСПД уровня, где производится обработка измерительной информации (умножение на коэффициенты трансформации), сбор и хранение результатов измерений. Далее информация поступает на ИВК.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ). В СОЕВ входят средства измерений, обеспечивающие измерение времени, также учитываются временные характеристики (задержки) линий связи, которые используются при синхронизации времени.

Синхронизация времени производится с помощью GPS-приемника, принимающего сигналы глобальной системы позиционирования, входящего в комплект УССВ, подключаемого к УСПД. От УССВ синхронизируются внутренние часы УСПД, а от них – внутренние часы счетчиков, подключенных к УСПД. Уставка, при достижении которой происходит коррекция часов УСПД, составляет 1 с. Синхронизация внутренних часов счетчика с верхним уровнем АИИС КУЭ происходит при каждом обращении (каждый сеанс связи). ПО позволяет назначить время суток, в которое можно производить коррекцию времени. Рекомендуется для этой операции назначить время с 00:00 до 03:00 часов.

Журналы событий счетчика электроэнергии и УСПД отражают время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах, корректируемого и корректирующего устройств в момент непосредственно предшествующий корректировке.

Предел допускаемой абсолютной погрешности хода часов АИИС КУЭ ±5 с/сут.

МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Состав измерительных каналов АИИС КУЭ с указанием наименования ввода, типов и классов точности средств измерений, входящих в состав ИК, номера регистрации средств измерений в Государственном реестре средств измерений представлен в таблице 1.

Состав измерительных каналов АИИС КУЭ приведен в таблице 1.

Таблица 1 -	Состав	измерительных	каналов
-------------	--------	---------------	---------

Ta	олица 1	- Состав измерительных к	аналов			
No	Код		Состав измерительного канала			Вид
ИИК	НΠ	Наименование объекта	T 1	Трансформатор	Счётчик электри-	электро-
п/п	ATC		Трансформатор тока	напряжения	ческой энергии	энергии
1	2	3	4	5	6	7
			ТФ3М-500	НДЕ-500-8341	EA02RAL-P4B-4	
	ВЛ-500 кВ «НГРЭС»	кл. т 0,5	кл. т 0,5	кл. т 0,2S/0,5		
			Kтт = 2000/1 Зав. № 2801	$K_{TH} = 500000: \sqrt{3}/100: \sqrt{3}$	Зав. № 01089632	
			3ab. № 2001 3ab. № 2223	Зав. № 1220208	Госреестр № 16666-07	активная
1	'		Зав. № 2676	Зав. № 1220211	· ·	реактивная
ļ			Зав. № 2790	Зав. № 1220214		_
			Зав. № 2654	Sub. 312 1220211		
			Зав. № 2785	Госрестр № 3898-17		
			Госреестр № 3639-73		ELOOPAL DAD 4	
			ТФЗМ-500 кл. т 0,5	НДЕ-500-8341	EA02RAL-P4B-4	
		ВЛ-500 кВ «КГРЭС»	Кл. Т 0,3 Ктт = 2000/1	кл. т 0,5	кл. т 0,2S/0,5	ĺ
			Зав. № 2308	$K_{TH} = 500000: \sqrt{3}/100: \sqrt{3}$	Зав. № 01089621	
			Зав. № 2688	Зав. № 1220209	Госреестр № 16666-07	активная
2	'		Зав. № 2699	Зав. № 1220213		реактивная
			Зав. № 2788	Зав. № 1220212		
			Зав. № 2789			
			Зав. № 26785 Госреестр № 3639-73	Госреестр № 3898-17		
			1 ocpeectp M2 3039-73		EA02RAL-P4B-4	
		TCH 3 0,4 кВ			кл. т 0,2S/0,5	
		1CH 3 0,4 kB			1 ' '	
					Зав. № 01101385	активная
3	ı				Госреестр № 16666-07	реактивная
						_
	İ					Ì

Таблица 2 – Метрологические характеристики ИИК (активная энергия)

Границы допускаемой относительной погрешности измерения активной электрической энергии в рабочих условиях эксплуатации АИИС КУЭ					
Номер ИИК		δ _{1(2)%} ,	δ5 %,	δ _{20 ‰}	δ ₁₀₀ %,
	cosφ	I ₁₍₂₎ ≤ I _{13M} < I _{5%}	I ₅ %≤ I _{нзм} < I ₂₀ %	I ₂₀ %≤ I _{нзм} < I ₁₀₀	$I_{100} \% \le I_{H3M} < I_{120} \%$
	1,0	-	±1,9	±1,2	±1,0
1 - 2	0,9	-	±2,4	±1,4	±1,2
	0,8	-	±2,9	±1,7	±1,4
(TETE O # - 1011 O # - C 0 3C)	0,7	-	±3,6	±2,0	±1,6
(TT 0,5; TH 0,5; C4 0,2S)	0,5	-	±5,5	±3,0	±2,3

Таблица 3 – Метрологические характеристики ИИК (реактивная энергия)

Границы допускаемой относительной погрешности измерения реактивной электрической энергии в рабочих условиях эксплуатации АИИС КУЭ					
Номер ИИК		δ _{1(2)%} ,	δ5%,	δ _{20 %} ,	δ ₁₀₀ %,
	cosφ	$I_{1(2)} \le I_{\text{H3M}} < I_{5\%}$	$I_{5} \% \le I_{_{H3M}} < I_{_{20}} \%$	I ₂₀ %≤ I _{нзм} < I ₁₀₀ %	$I_{100} \% \le I_{H3M} < I_{120} \%$
1 - 2	0,9	-	±7,1	±3,9	±2,9
	0,8	-	±4,5	±2,5	±1,9
(TT 0,5; TH 0,5; C4 0,5)	0,7	-	±3,7	±2,1	±1,7
	0,5	_	±2,7	±1,6	±1,3

Примечания:

- 1. Характеристики относительной погрешности ИИК даны для измерения электроэнергии и средней мощности (30 мин.).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3. Нормальные условия эксплуатации компонентов АИИС КУЭ:
 - напряжение питающей сети: напряжение (0.98...1,02)· Uном, ток $(1 \div 1.2)$ · Іном, со $s \varphi = 0.9$ инд;
 - температура окружающей среды (20 \pm 5) °C.
- 4. Рабочие условия эксплуатации компонентов АИИС КУЭ:
 - напряжение питающей сети (0,9...1,1)·Uном, сила тока (0,01...1,2)·Іном;
 - температура окружающей среды:
 - счетчики электроэнергии «ЕвроАльфа» от минус 40 ℃ до плюс 70 ℃;
 - УСПЛ от плюс 5 до плюс 35 °C;
 - трансформаторы тока по ГОСТ 7746;
 - трансформаторы напряжения по ГОСТ 1983.
- 5. Трансформаторы тока по ГОСТ 7746, трансформаторы напряжения по ГОСТ 1983, счетчики электроэнергии по ГОСТ Р 52323 в режиме измерения активной электроэнергии, по ГОСТ Р 52425 в режиме измерения реактивной электроэнергии;
- 6. Допускается замена измерительных трансформаторов и счетчиков электроэнергии на аналогичные (см. п. 6 Примечания) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 1. Допускается замена компонентов системы на однотипные утвержденного типа. Замена оформляется актом в установленном на объекте порядке. Акт хранится совместно с настоящим описанием типа АИ-ИС КУЭ как его неотъемлемая часть.
- 7. Информационно-измерительный канал N_2 3 не нормируется в связи с отсутствием информации о трансформаторах тока и трансформаторах напряжения.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- счетчик электроэнергии "ЕвроАЛЬФА" среднее время наработки на отказ не менее 80000 часов;
- УСПД среднее время наработки на отказ не менее 35000 часов;

Среднее время восстановления, при выходе из строя оборудования:

- для счетчика Тв ≤ 2 часа;
- для сервера Тв ≤ 1 час;
- для УСПД Тв ≤ 1 час;
- для компьютера АРМ Тв ≤ 1 час;
- для модема Тв ≤ 1 час.

Защита технических и программных средств АИИС КУЭ от несанкционированного доступа:

- клеммники вторичных цепей измерительных трансформаторов имеют устройства для пломбирования;
- панели подключения к электрическим интерфейсам счетчиков защищены механическими пломбами;
- наличие защиты на программном уровне возможность установки многоуровневых паролей на счетчиках, УСПД, сервере, АРМ;
- организация доступа к информации ИВК посредством паролей обеспечивает идентификацию пользователей и эксплуатационного персонала;
- защита результатов измерений при передаче.

Наличие фиксации в журнале событий счетчика следующих событий

• фактов параметрирования счетчика;

- фактов пропадания напряжения;
- фактов коррекции времени.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- сервере (функция автоматизирована).

Глубина хранения информации:

- счетчики электроэнергии "ЕвроАЛЬФА" до 5 лет при температуре 25 °C;
- ИВК хранение результатов измерений и информации о состоянии средств измерений за весь срок эксплуатации системы.

МЕСТО И СПОСОБ НАНЕСЕНИЯ ЗНАКА УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на титульные листы эксплуатационной документации АИИС КУЭ типографским способом.

КОМПЛЕКТНОСТЬ ПОСТАВКИ

Комплектность АИИС КУЭ определяется проектной документацией на систему. В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

ПОВЕРКА

Поверка проводится в соответствии с документом «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электрической энергии АИ-ИС КУЭ - "ПС 500 кВ Удмуртская». Методика поверки». МП-931/446-2010 утвержденным ГЦИ СИ ФГУ «Ростест-Москва» в ноябре 2010 г.

Средства поверки – по НД на измерительные компоненты:

- TT πο ΓΟCT 8.217-2003;
- TH по МИ 2845-2003, МИ 2925-2005 и/или по ГОСТ 8.216-88;
- Счетчик "ЕвроАЛЬФА" в соответствии с документом «ГСИ. Счетчики электрической энергии многофункциональные ЕвроАльфа. Методика поверки».
- УСПД RTU-325 в соответствии с документом ДЯИМ.466453.005 МП утвержденным ГЦИ СИ ФГУП «ВНИИМС».
- Радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS). (Госреестр № 27008-04);
- Переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы, ПО для работы с радиочасами МИР РЧ-01;
- Термометр по ГОСТ 28498, диапазон измерений 40...+60°С, цена деления 1°С.

Межповерочный интервал – 4 года.

СВЕДЕНИЯ О МЕТОДИКАХ (МЕТОДАХ) ИЗМЕРЕНИЙ

Измерения производятся в соответствии с документом: «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электрической энергии АИИС КУЭ - "ПС 500 кВ Удмуртская"».

НОРМАТИВНЫЕ ДОКУМЕНТЫ

- 1. ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 2. ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
- 3. ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.
 - 4. ГОСТ 7746-2001 Трансформаторы тока. Общие технические условия.
 - 5. ГОСТ 1983-2001 Трансформаторы напряжения. Общие технические условия.
- 6. ГОСТ Р 52323-2005 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S.
- 7. ГОСТ Р 52425-2005 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии.
- 8. МИ 2999-2006 «Рекомендация. ГЦИ. Системы автоматизированные информационно-измерительные коммерческого учета электрической энергии. Рекомендации по составлению описания типа».

ИЗГОТОВИТЕЛЬ

ООО «Энсис Технологии»

Адрес: 111250, г. Москва, проезд завода «Серп и Молот», д. 6

Тел. (495) 797-99-66 Факс (495) 797-99-67 http://www.ensyst.ru/

ЗАЯВИТЕЛЬ

Филиал ОАО «ИЦ ЕЭС» — «Фирма ОРГРЭС»

Адрес: 107023, г. Москва, Семеновский переулок, д. 15

Тел. (495) 223-41-14 Факс (495) 926-30-43 http://www.orgres-f.ru/

Директор Филиала ОАО «ИЦ ЕЭС»-«Фирма ОРГРЭС»

Р.А. Асхатов