

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

CBUMETENDOES ()

об утверждении типа средств измерений

RU.C.34.092.A № 42077

Срок действия до 25 января 2016 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Комплексы автоматизированные измерительно-информационные "СИСТЕЛ" (КАЙИ "СИСТЕЛ")

ИЗГОТОВИТЕЛЬ

Общество с ограниченной ответственностью "Системы телемеханики" (ООО "СИСТЕЛ"), г.Москва

РЕГИСТРАЦИОННЫЙ № 46071-11

ДОКУМЕНТ НА ПОВЕРКУ МЦКТЮ002-МП

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 6 лет

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 25 января 2011 г. № 131

Описание типа средств измерений является обязательным приложением к-настоящему свидетельству.

Заместитель Руководителя		В.Н.Крутико]
Федерального агентства			
			•
	11	"	

№ 000085

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

лист №

всего листов

Комплексы автоматизированные измерительно-информационные «СИСТЕЛ» (КАИИ «СИСТЕЛ»)

Назначение средства измерений

Комплексы автоматизированные измерительно-информационные «СИСТЕЛ» (КАИИ «СИСТЕЛ») (далее – комплекс) предназначены для измерений приращений электрической энергии и мощности; суммарного объёма (количества) и объёмного расхода воды; количества тепловой энергии выработанной, поставленной (распределённой) и потреблённой за установленные интервалы времени; суммарного объёма и массы, объёмного и массового расхода теплоносителя; давления и температуры в тепловых и водопроводных сетях; суммарного объёма и объёмного расхода природного газа (далее - энергоресурсы) с привязкой к календарному времени, а также сбора, отображения, обработки, хранения и передачи полученной информации и вспомогательных сведений (технологические параметры).

Описание средства измерений

Комплекс представляет собой распределенный многоуровневый программно-аппаратный комплекс, с переменным составом оборудования, имеющий измерительные каналы учета и каналы телемеханики.

Принцип действия комплекса основан на обработке входных измерительных сигналов:

- от первичных измерительных преобразователей (тип входного сигнала частота следования импульсов, сила постоянного тока, напряжение постоянного тока, электрическое сопротивление);
- от средств измерений с цифровым выходным сигналом и узлов учета различных энергоресурсов (CAN, RS-232, RS-485, Ethernet), их обработке с помощью программного обеспечения, для получения измеряемых параметров (прямой метод измерений).

Комплекс включает в себя автономные автоматизированные системы, базирующиеся на единой программно-аппаратной платформе:

- автономная автоматизированная система диспетчерского управления технологическим процессом (АС ДУ);
- автономная автоматизированная система коммерческого учета энергоресурсов (AC КУЭР);
- автономная автоматизированная система мониторинга устройств релейной защиты и автоматики (AC MP3A).

Структурно комплекс можно разделить на уровни:

- уровень сбора и обработки информации данный уровень включает в свой состав шкафы сбора данных, реализованные на базе «МТК-30.КП» (далее ШСД), выпускаемые ООО «СИСТЕЛ» по ТУ 4232-130-17683977-2004 и технологические автоматизированные рабочие места (АРМ). В зависимости от решаемых задач в комплектность ШСД могут быть установлены следующие типы средств измерений:
 - для учета количественных и качественных показателей электрической энергии (используется только цифровой интерфейс CAN, RS-232, RS-485) в соответствии с таблицами 1 и 2;
 - для учета прочих энергоресурсов, только в соответствии с таблицей 2.

Таблина 1

№ п/п	Наименование (тип средства измерений)	№ в Госреестре СИ РФ
1	Контроллеры сетевые индустриальные «Сикон-С1»	15236-08
2	Контроллеры сетевые индустриальные СИКОН С60	44900-10
3	Контроллеры сетевые индустриальные СИКОН С70	28822-05
4	Сумматоры электронные многофункциональные для учета электроэнергии «СЭМ 2»	31924-06
5	Устройства мониторинга УМ-31	33755-07
6	Устройства сбора и передачи данных RTU-325 и RTU-325L	37288-08

Таблица 2

№ п/п	Наименование (тип средства измерений)	№ в Госреестре СИ РФ
1	Устройства сбора и передачи данных «УСПД МГС-926»	44565-10
2	Контроллер узлов учета «УМ-50.2»	44569-10

- уровень обработки и хранения информации представляет собой оперативноинформационный комплекс, построенный по клиент-серверной технологии на базе промышленных компьютеров и состоящий из серверов различного функционального назначения, сетевого оборудования, автоматизированных рабочих мест диспетчеров и специалистов, электронных архивов, которые взаимодействуют в среде локальной вычислительной сети (ЛВС).
- уровень представления информации на данном уровне реализована система комплексного отображения информации (СКОИ), состоящая из оборудования диспетчерского щита (сервер, контроллеры и аппаратура визуализации) и удаленных автоматизированных рабочих мест администраторов и пользователей (АРМ Руководителя и), также Web-сервер.

В составе комплекса предусмотрена система обеспечения единого времени (СОЕВ), которая предназначена для обеспечения единого времени во всех компонентах комплекса. В качестве сигналов точного времени используются сигналы точного времени, получаемые от навигационной системы GPS/ГЛОНАС при помощи устройства синхронизации времени УСВ-1 (номер регистрации в Государственной реестре средств измерений 28716-05). Синхронизация времени осуществляется с помощью программного обеспечения входящего, в комплект поставки, не реже одного раза в час, за счёт чего обеспечивается единство системного времени.

Сличение времени один раз в полчаса (при каждом измерительном опросе) и при каждом дополнительном (внештатном) измерительном опросе, корректировка времени производится при расхождении со временем сервера более ± 1 с.

СОЕВ функционирует в автоматическом режиме и производит коррекцию времени на всех уровнях. Корректировка времени на уровнях комплекса осуществляется последовательно, начиная с верхнего уровня.

Программная часть комплекса реализована с помощью прикладного программного обеспечения системы автоматизированной информационно-измерительной (АИИС) «Энергоресурс», которое имеет свидетельство об аттестации программного обеспечения под №30092 $\PiO/013$ –2010.

Для исключения возможности непреднамеренных и преднамеренных изменений измерительной информации, все оборудование, входящее в состав комплекса, должно быть «защищено» (опломбировано) в соответствии с технической документацией на него, все информационно-измерительные каналы, должны быть опломбированы в точках, где возможно несанкционированное воздействие на результаты измерений, сервера и АРМы защищены персональными логинами и паролями, а также журналами событий для регистрации входа и действий. Прикладное программное обеспечение системы автоматизированной информационно-измерительной (АИИС) «Энергоресурс» имеет уровень защиты – С, по МИ 3286-2010.

Обозначения типа комплекса при поставке:

КАИИ «СИСТЕЛ» АБВГ

- где А поле символа характеристики АС ДУ определяется по таблице 3;
 - Б поле символа характеристики АСМ РЗА определяется по таблице 4;
 - В поле символа характеристики АС КУЭР определяется по таблице 5;
- Γ поле символа характеристики системы комплексной визуализации определяется по таблице 6.

Таблица 3 - Значение характеристического символа АС ДУ

Значение	Наличие	приборов теле	емеханики	Каналы техни-	Пругланализа
символа	КП	ЦППС	Серверов	ческого учета	Примечание
0	Нет	Нет	Нет	Нет	АС ДУ не поставляется
1	Есть	Нет	Нет	Нет	
2	Нет	Есть	Нет	Нет	
3	Есть	Есть	Нет	Нет	
4	Нет	Нет	Есть	Нет	
5	Есть	Нет	Есть	Нет	
6	Нет	Есть	Есть	Нет	
7	Есть	Есть	Есть	Нет	
8	Нет	Нет	Нет	Есть	Поставляется только ШСД, подключаемый к каналам учета
9	Есть	Нет	Нет	Есть	
A	Нет	Есть	Нет	Есть	
В	Есть	Есть	Нет	Есть	
C	Нет	Нет	Есть	Есть	
D	Есть	Нет	Есть	Есть	
Е	Нет	Есть	Есть	Есть	
F	Есть	Есть	Есть	Есть	
G				Есть	АС ДУ поставляется некомплектно

Таблица 4 - Значение характеристического символа АСМ РЗА

Значение символа	Характеристика
0	АСМ РЗА не поставляется
1	АСМ РЗА интегрирована в АС ДУ
2	АСМ РЗА поставляется
3	АСМ РЗА поставляется некомплектно

Таблица 5 - Значение характеристического символа АС КУЭР

	На				
Значение символа	Электриче- ской энер- гии	Тепловой энергии	Газа	Воды	Примечание
1	2	3	4	5	6
0	Нет	Нет	Нет	Нет	АС КУЭР не поставляется
1	Есть	Нет	Нет	Нет	
2	Нет	Есть	Нет	Нет	
3	Есть	Есть	Нет	Нет	

Продолжение таблицы 5

1	2	3	4	5	6
4	Нет	Нет	Есть	Нет	
5	Есть	Нет	Есть	Нет	
6	Нет	Есть	Есть	Нет	
7	Есть	Есть	Есть	Нет	
8	Нет	Нет	Нет	Есть	
9	Есть	Нет	Нет	Есть	
A	Нет	Есть	Нет	Есть	
В	Есть	Есть	Нет	Есть	
C	Нет	Нет	Есть	Есть	
D	Есть	Нет	Есть	Есть	
Е	Нет	Есть	Есть	Есть	
F	Есть	Есть	Есть	Есть	

Таблица 6 - Значение характеристического символа СКОИ

Значение	Характеристика диспетчерского щита			
символа	основной	резервный		
0	нет	нет		
1	Мозаичный щит светлого типа	нет		
2	Мозаичный щит светлого типа	Плазменные панели		
3	Мозаичный щит светлого типа	LSD панели		
4	Мозаичный щит темного типа	нет		
5	Мозаичный щит темного типа	Плазменные панели		
6	Мозаичный щит темного типа	LSD панели		
7	Видеокубы	нет		
8	Видеокубы	Видеокубы		
9	Видеокубы	Плазменные панели		
A	Видеокубы	LSD панели		
В	Плазменные панели	нет		
C	Плазменные панели	Плазменные панели		
D	Плазменные панели	LSD панели		
Е	LSD панели	нет		
F	LSD панели	LSD панели		
G	LSD панели	Плазменные панели		

Примеры обозначения КАИИ при его заказе в следующем исполнении:

a)

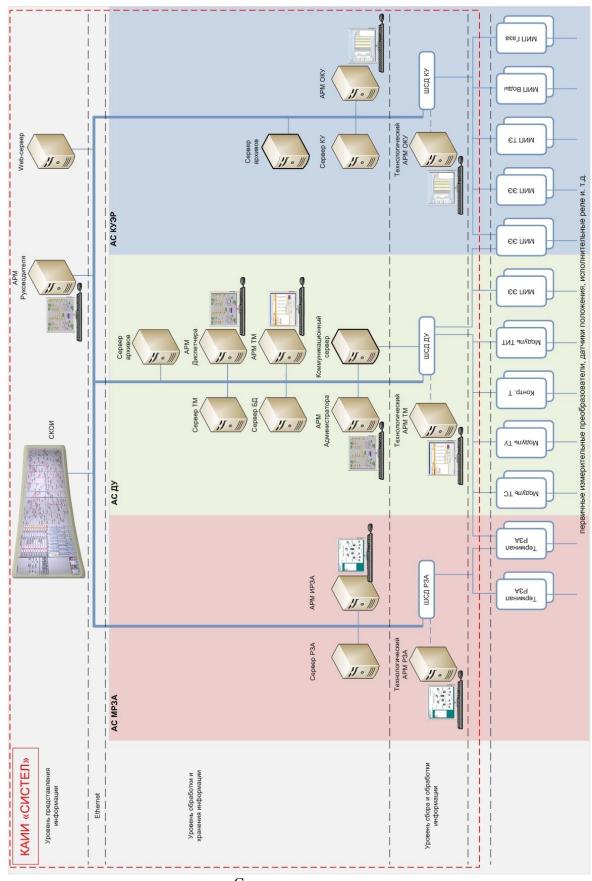
АС ДУ с резервированием на уровне серверов и интегрированными каналами технического учета;

АС МРЗА интегрирована в АС ДУ;

АС КУЭР электрической и тепловой энергии, и газа;

СКОИ видеокубы на основном и резервном диспетчерских щитах:

Комплекс автоматизированный измерительно-информационный «СИСТЕЛ» «КАИИ «СИСТЕЛ» С178 ТУ 4252-041-59703777-2010


б)

АС ДУ без резервирования, с интегрированными каналами технического учета; Без АСМ РЗА;

АС КУЭР электрической энергии;

СКОИ - LSD панели на основном и резервном диспетчерских щитах:

Комплекс автоматизированный информационно-измерительный «СИСТЕЛ» «КАИИ «СИСТЕЛ» 801F ТУ 4252-041-59703777-2010

Структурная схема Комплекса автоматизированного измерительно-информационного «СИСТЕЛ» (КАИИ «СИСТЕЛ»)

Метрологические и технические характеристики

Таблица 7 - Входные сигналы¹

Вид входного сигнала	Характеристики входного сигнала	Пределы допус- каемой погрешно- сти, %
Импульсный сигнал (счет количества импульсов)	тип датчика: герконовый. минимальная длительность импульса: 1 мс. частота импульсов, Гц, не более – 100.	$\pm 0.01^{2}$
Аналоговый сигнал	- силы постоянного тока: 0-20 мA, 4-20 мА - постоянного напряжения: 0-10 В	$\pm 0.5\%^3$ $\pm 0.1\%^3$
Аналоговый сигнал	- омический (Pt100) (измерение в диапазоне оминус 40 °C до плюс 150 °C)	±1 °C ⁴
Дискретный сигнал	типа «сухой контакт»	-
RS-232	размер слова: от 5 до 9 бит стоповых бит: 1, 2 паритет: четный, нечетный, без паритета скорость: от 300 до 115200 бит/с	± 1 единица младшего разряда измеренной величины ⁵
RS-485	паритет: четный, нечетный, без паритета скорость: от 300 до 115200 бит/с	±1 единица млад- шего разряда изме- ренной величины ⁵
CAN	паритет: четный, нечетный, без паритета скорость: от 300 до 115200 бит/с	±1 единица млад- шего разряда изме- ренной величины ⁵

Примечания:

- 1 количество входных каналов, их типы и технические характеристики соответствуют ТУ на конкретные типы УСПД входящие в состав комплекса в соответствии с заказом.
 - ² относительная погрешность;
 - ³ является приведенной к диапазону входного сигнала;
- 4 абсолютная погрешность; 5 предел допускаемой абсолютной погрешности считывания, преобразования и передачи измеренных значений от средств измерений в вычислительные компоненты и промышленные ЭВМ, единиц младшего.

Таблица 8 – Характеристики канала измерения времени

Пределы допускаемой абсолютной погрешности хода часов, с (за сутки)	± 3
Пределы допускаемой абсолютной погрешности синхронизации от источника точ-	
ного времени, с	± 1

Таблица 9 – Программное обеспечение

Наименование ПО	Идентификацион- ное наименование ПО	Номер версии ПО	Цифровой идентификатор ПО (контрольная сумма)	Алгоритм вычисления цифрового идентификатора ПО
Прикладное программное обеспечение системы автоматизированной информационноизмерительной (АИИС) «Энергоресурс»	ППО АИИС «Энергоресурс» v. 1.0.2	1.0.2	D4E50AE03 EFAC26957 9DFFDE6AC 08C2F	MD5

Таблица 10 – Общетехнические параметры

Основной источник питания (сеть переменного тока)	
- номинальное напряжение, В	+10% 2.20 -15%
- частота переменного тока, Гц	50±1
Хранение данных при отключении питания, не менее, лет	10
Интерфейс передачи данных	USB, Ethernet
Интерфейс передачи данных (беспроводной)	GSM 900/1800, CDMA-
	450 1X или EVDO REV
	A, WiFi, WiMAX
Рабочие условия эксплуатации	
- диапазон температуры окружающего воздуха, °С	от 0 до + 40
- относительная влажность воздуха, %, при 25 °C	до 95
- атмосферное давления, кПа	от 84 до 106,7
Средняя наработка на отказ, не менее, ч	120000
Среднее время восстановления, не более, ч	24
Средний срок службы, лет	20

Знак утверждения типа

Знак утверждения типа наносится на титульных листах эксплуатационной документации типографским методом.

Комплектность средства измерений

В комплект поставки входят:

- Комплекс автоматизированный измерительно-информационный «СИСТЕЛ» (КАИИ «СИСТЕЛ») $^1-1$ экз.;
- Комплексы автоматизированные измерительно-информационные «СИСТЕЛ» (КАИИ «СИСТЕЛ»). Руководство по эксплуатации 4252-041-59703777-2010 РЭ 1 экз.;
- Комплексы автоматизированные измерительно-информационные «СИСТЕЛ» (КАИИ «СИСТЕЛ»). Формуляр 4252-041-59703777-2010 ФО -1 экз.;
- Комплексы автоматизированные измерительно-информационные «СИСТЕЛ» (КАИИ «СИСТЕЛ»). Методика поверки. МЦКЛ.0002.МП 1 экз.
- Прикладное программное обеспечение системы автоматизированной информационноизмерительной (АИИС) «Энергоресурс».

Поверка

осуществляется по инструкции «Комплекс автоматизированный информационно-измерительный «СИСТЕЛ» (КАИИ «СИСТЕЛ»). Методика поверки» МЦКЛ.0002.МП, утвержденной ООО КИП «МЦЭ» в 25 ноября 2010 г.

Основные средства поверки:

- частотомер Ч3-88 выпускаемый по ТУ ВҮ 100039847.076-2006 с пределами измерений $t_{\rm B}\!\!=\!\!(0,1\cdot10^{-6}\!\!\div\!10)$ с и с пределом допускаемой погрешности $\Pi\Gamma\!\!=\!\!(|5\cdot10^{-7}\cdot t|\!+|\Delta t_{\rm yp}|\!+\!|\Delta t_{\rm 3an}|\!+\!|To|)$ с;
- калибратор H4-7, зарегистрирован в Государственном реестре средств измерений под № 22125-01 и с пределами допускаемой погрешности: воспроизведения силы постоянного то-ка ±(0,005%-0,03%), воспроизведения напряжения постоянного тока ±(0,0025%-0,004%);
- калибратор Yokogawa CA-51, зарегистрирован в Государственном реестре средств измерений под №19612-08;

¹ - Комплектность определяется технорабочим проектом в соответствие с техническим заданием для конкретного объекта (в техническом задании задаются измеряемые величины, диапазоны измеряемых величин, рабочие условия и требования к метрологическим характеристикам, а в технорабочем проекте формируется состав оборудования измерительного канала для решения поставленных задач).

Сведения о методиках (методах) измерений

Метод измерений описан в эксплуатационном документе «Комплексы автоматизированные измерительно-информационные «СИСТЕЛ» (КАИИ «СИСТЕЛ»). Руководство по эксплуатации 4252-041-59703777-2010 РЭ».

Нормативные документы устанавливающие требования к комплексам

- 1 ГОСТ Р 8.596-2002 Метрологическое обеспечение измерительных систем.
- 2 Комплексы автоматизированные измерительно-информационные «СИСТЕЛ» (КАИИ «СИСТЕЛ»). Методика поверки. МЦКЛ.0002.МП.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций в соответствии с ч. 3 Федерального закона «Об обеспечении единства измерений» № 102-ФЗ от 26.06.2008 г., п. 7, статьи 1.

Изготовитель

Общество с ограниченной ответственностью «Системы телемеханики»

(ООО «СИСТЕЛ»).

Адрес: РФ, 107040, г. Москва, ул. Краснопрудная, д.12/1, к. 1

(495) 727-3965, факс: (495) 727-4436.

Испытания провел

Государственный центр испытаний средств измерений ООО КИП «МЦЭ»

125424 г. Москва, Волоколамское шоссе, 88, стр. 8

тел: (495) 491 78 12, (495) 491 86 55 E-mail: sittek@mail.ru, kip-mce@nm.ru

Аттестат аккредитации – зарегистрирован в Госреестре СИ РФ № 30092-10.

Заместитель

Руководителя Федерального агентства по техническом регулированию и метройого

В.Н.Крутиков

М.п