
ОПИСАНИЕ ТИПА ДЛЯ ГОСУДАРСТВЕННОГО РЕЕСТРА СРЕДСТВ ИЗМЕРЕНИЙ

Приложение и свидетельству
№4490605 утверждении типа
средств измерений

СОГЛАСОВАНО

Фурье-спектрометры комбинационного рассеяния света MultiRAM

Внесёны в Государственный реестр средств измерений Регистрационный номер № ч5759-{○

Изготавливаются по технической документации «Bruker Optik GmbH», Германия

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Фурье-спектрометры комбинационного рассеяния света MultiRAM (далее — Фурье-спектрометры) предназначены для измерения оптических спектров комбинационного рассеяния света в ближнем ИК и видимом диапазонах, определения концентрации различных органических и неорганических веществ в порошкообразной и твёрдой фазе продукции нефтехимического производства, органического синтеза, продуктах питания, фармацевтики и т.п. Фурье-спектрометры применяются в качестве отдельных автономных приборов в аналитических лабораториях промышленного производства, научно-исследовательских и учебных организаций.

ОПИСАНИЕ

Фурье-спектрометры комбинационного рассеяния света MultiRAM представляют собой стационарные автоматизированные приборы.

Принцип действия основан на методе эмиссионного оптического спектрального анализа.

Основой Фурье-спектрометров является двухлучевой интерферометр, в котором при перемещении одного из зеркал происходит изменение разности хода между интерферирующими лучами. Для уменьшения влияния внешних воздействий интерферометр построен по схеме с зеркалами в виде уголковых светоотражателей. Спектр (в шкале волновых чисел) получается после выполнения специальных математических расчетов (обратное преобразование Фурье) интерферограммы.

Движение зеркала в интерферометре осуществляется линейно с помощью прецизионного механизма. Точное положение зеркала (разность хода в

интерферометре) определяется с помощью референтного канала с лазером. Нулевое значение разности хода (основной максимум интерферограммы) определяется расчётным путём.

В интерферометре осуществлена автоматическая настройка с использованием дополнительного подстраивающего зеркала, прибор оборудован стабильной оптической скамьей и двумя отсеками хранения светоделителей.

Полностью цифровой прибор оборудован детекторами со встроенными предусилителями сигнала и АЦП, вследствие чего нет влияния на прибор электромагнитных излучений.

В спектрометре используется внешний блок питания.

При падении лазерного излучения на образец происходит возбуждение комбинационного рассеяния света. Интерферометр выделяет спектральную полосу, которая регистрируется с помощью детектора. Спектральный состав излучения характеризует химический состав пробы.

Конструктивно спектрометры выполнены в виде настольных приборов с отдельно устанавливаемым компьютером. В спектрмоетре применяется внешний блок питания со следующими характеристиками.

Спектрометры выпускаются в модификациях, отличающихся длиной волны возбуждающего лазера и спектральными характеристиками.

Управление процессом измерения осуществляется от внутреннего контроллера и совместимого компьютера с помощью программного комплекса OPUS. Программный комплекс OPUS - это пакет программ, предназначенных для наиболее полного использования всех возможностей спектрометров.

С помощью программного обеспечения осуществляется настройка прибора, оптимизация его параметров, управление его работой, обработка выходной информации, в том числе построение градуировочных графиков, печать результатов и сохранение результатов анализа. Программный пакет OPUS обеспечивает возможность использования измерительной информации другими программами для подготовки документов с результатами измерений.

Спектрометры комплектуются библиотеками спектров веществ, что позволяет проводить идентификацию исследуемых образцов.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Параметры	Спецификация
Длина волны возбуждающего лазера, нм	1064, 758
Спектральный диапазон измерений, см-1	Для 1064 нм 70-3500 Для 785 нм 150-4100 Опция - 50
Спектральное разрешение, см-1, не более	0,8
Воспроизводимость волнового числа, см-1	±0,1
Пределы допускаемой абсолютной погрешности измерений по шкале волновых чисел, см ⁻¹	±0,1
Напряжение питания перем. тока (50 Гц), В	220 +22/-15
Потребляемая мощность, ВА	180
Габаритные размеры, мм	970-850-290

Масса, кг	72
Условия эксплуатации: -температура окружающего воздуха, °С -изменение температуры в ходе измерения, С°/ч -относительная влажность воздуха, %	+ 18 +35 ± 1 <80
Условия транспортировки и хранения - диапазон температур, °С - относительная влажность воздуха	- 20 - + 70 <80
Срок службы, не менее, лет	7

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на корпус прибора и на титульный лист руководства по эксплуатации.

КОМПЛЕКТНОСТЬ

Комплект поставки определяется заказом и отражается в спецификации.

Основной комплект включает:

Фурье-спектрометр комбинационного рассеяния света MultiRAM

Компьютер

Принтер

Комплект инструментов

Программное обеспечение

Руководство по эксплуатации (на русском языке)

Методика поверки

Набор для пробоподготовки

Дополнительное оборудование, поставляемое по заказу

Оборудование для пробоотбора и пробоподготовки

Жидкостные кюветы

Библиотеки спектров твёрдых, жидких и газообразных образцов

Термоячейки и нагревательные кюветы

Криостаты

Автосемплеры

Прецизионные ХҮΖ столики

Вращатели образца

Поляризаторы

КР микроскоп

ПОВЕРКА

Поверка Фурье-спектрометров комбинационного рассеяния света MultiRAM проводится в соответствии с документом «Фурье-спектрометры комбинационного

рассеяния света MultiRAM фирмы "Bruker Optik GmbH". Методика поверки», утверждённая ГЦИ СИ ОАО ФНТЦ «Инверсия» в феврале 2010 г.

Основные средства поверки: нафталин по ГОСТ 16106-82. Межповерочный интервал - 1 год.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

- 1. ГОСТ Р 52931-2008 «Приборы контроля и регулирования технологических процессов. Общие технические условия».
- 2. ГОСТ P51350-99 «Безопасность электрических контрольно-измерительных приборов и лабораторного оборудования».
 - 3. Техническая документация фирмы-изготовителя.

ЗАКЛЮЧЕНИЕ

Тип Фурье-спектрометров комбинационного рассеяния света MultiRAM утверждён с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации.

ИЗГОТОВИТЕЛЬ - фирма «Bruker Optik GmbH»

Адрес:

D-76275 Ettlingen, Rudolf-Plank Sir., 27 Germany

Телефон: (07243)504-600 Факс: (07243)504-698 E-mail: <u>optik@bruker.de</u>

ЗАЯВИТЕЛЬ – ООО «Брукер»

Адрес: 119991, Москва, Ленинский проспект, 47, ИОХ РАН

Телефон (495) 502 90-06, Факс: (495) 502 90-07

Главный метролог ОАО ФНТЦ «Инверсия»

Н.В. Ильина

fiftler,

Представитель «Bruker Optik GmbH»,

Руководитель подразделения ООО «Брукер»

Заместитель генерального директора ООО «Брукер»

А.В.Вахтель