ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ СОГЛАСОВАНО

Руководитель ГЦИ СИ СНИИМ – зам. директора ФГУП «СНИИМ»

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии филиала ООО «РУС-Инжиниринг» в г. Красноярске

Внесена в Государственный реестр средств измерений. Регистрационный № <u>45254-10</u>

Изготовлена по технической документации ООО НПК «Спецэлектромаш» 36143726.422231.153, г. Красноярск, зав. №1.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии филиала ООО «РУС-Инжиниринг» в г. Красноярске (далее АИИС) предназначена для измерения активной и реактивной электрической энергии, средней активной и реактивной и реактивной в координированной шкале времени.

Область применения — коммерческий учет электрической энергии, потребляемой филиалом ООО «РУС-Инжиниринг» в г. Красноярске от электрических сетей ОАО «Красноярский алюминиевый завод»

ОПИСАНИЕ

АИИС КУЭ представляет собой многофункциональную двухуровневую систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- периодический (1 раз в сутки) и /или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- передача в организации—участники оптового рынка электроэнергии результатов измерений;
- предоставление по запросу контрольного доступа к результатам измерений, данных о состоянии объектов и средств измерений со стороны сервера организаций—участников оптового рынка электроэнергии;

- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
- конфигурирование и настройка параметров АИИС КУЭ;
- ведение системы единого времени в АИИС КУЭ (коррекция времени).

АИИС выполнена в виде иерархической структуры с централизованным управлением и распределенной функцией измерений.

АИИС имеет двухуровневую структуру:

- 1-й уровень, включает в себя информационно-измерительные комплексы точек измерений (ИИК ТИ) ТТ, ТН и счетчики электрической энергии;
- 2-й уровень, включает в себя информационно-вычислительный комплекс (ИВК) с функциями сбора информации с ИИК ТИ.

В качестве ИВК АИИС используется измерительно-вычислительный комплекс для учета электрической энергии «Альфа-Центр» (Госреестр СИ № 20481-00), в качестве аппаратной части которого использован НР Proliant DL380R04 (сервер АИИС), устройство сбора и передачи данных (УСПД) RTU-325 (Госреестр № 37288-08) модификации RTU-325-E1-512-M3-B4-G, устройство синхронизации системного времени УССВ-35HVS. УСПД и сервер АИИС входят, в свою очередь, в состав АИИС КУЭ ОАО «Красноярский алюминиевый завод» (Госреестр СИ №30281-05). В состав ИВК входят также автоматизированные рабочие места, соединенные с сервером АИИС посредством сети Ethernet по сетевому протоколу ТСР/IР.

Первичные фазные токи и напряжения преобразуются измерительными трансформаторами в сигналы низкого уровня, которые по проводным линиям поступают на соответствующие входы электронных счетчиков электрической энергии типа Альфа А1800 (Г.р. №31857-06, модификация А1805 RL-P4GB-DW-4 (100B, 5A)) и ЕвроАльфа (Г.р. № 16666-07, модификация EA02RL-B-4). Мгновенные значения сигналов тока и напряжения преобразуются счетчиками в цифровую форму, и осуществляется вычисление мгновенной мощности. За период сети из мгновенных значений мощности вычисляется активная мощность, из мгновенных значений тока и напряжения их среднеквадратические значения и, затем, полная мощность. Реактивная мощность вычисляется из значений активной и полной мощности.

Счетчики электрической энергии по истечении каждого получасового интервала осуществляют привязку результатов измерения к времени в шкале UTC с учетом поясного времени.

АИИС оснащена системой обеспечения единого времени, которая работает следующим образом. Устройство синхронизации времени УССВ-35HVS производит прием и обработку сигналов системы GPS. Шкала времени УСПД синхронизируется со шкалой времени УССВ-35HVS в постоянном режиме по протоколу ТСР/IP, погрешность синхронизации составляет не более 10 мс. Передача шкалы времени часам счетчиков электрической энергии осуществляется во время сеанса связи УСПД в составе ИВК с каждым счетчиком. УСПД вычисляет разницу между показаниями своих часов и счетчика, и если поправка часов счетчика превышает ±2 с, производит коррекцию часов счетчика.

Результаты измерений автоматически передаются по протоколу SMTP (спецификация RFC 821) в формате XML 1.0 по программно-задаваемым адресам, в т.ч. в ОАО «АТС» и филиал ОАО «СО-ЦДУ ЕЭС». Результаты измерений защищены электронной цифровой подписью. АИИС передает результаты измерений во внешние системы. Для передачи данных во внешние системы используются следующие каналы связи:

- шины интерфейса RS-485 для «обвязки» счетчиков и подключения к существующей ЛВС ОАО «Красноярский алюминиевый завод» по основному каналу связи через коммутаторы Switch для передачи данных в УСПД;
- сети связи GSM качестве резервного канала связи передачи данных от ИИК в УСПД:
- ЛВС IEEE 802.3 для связи между блоками ИВК, подключения к глобальной сети Internet и для непосредственного доступа к УСПД со стороны ОАО «Красноярский алюминиевый завод»

Информационные каналы для связи АИИС с внешними системами построены посредством:

- глобальной информационной сети с присоединением через интерфейс IEEE для передачи данных внешним системам, в т. ч. ОАО «АТС» по основному каналу связи;
- сети связи GSM для передачи данных с ИИК непосредственно в ОАО «Красноярскэнергосбыт»;

Перечень ИК и состав ИИК ТИ приведен в таблице 1; состав ИВК АИИС приведен в таблице 2; перечень программных средств ИВК приведен в таблице 3.

об утверждении типа средства измерений. Лист 4, всего листов 8.

Приложение к свидетельству № Таблица 1. Перечень и состав ИК.

усп Д			ا	D-:	-15	<u></u>	986 -B4				391 -E	572	e-n	TЯ	[
	•	реакт	1,0		1,0		5,0			0,5			0,5		
оэнергии	Кл. т.	akT.	0,5s		0,5s		0,2s			0,2s			0,2s		
Счетчики электроэнергии		3ab. №	01199528		01199527 0,5s		01127390 0,2s			01127391			01 199 529 0,2s		
Счетч		Тип, модель	A1805 RL-	P4GB-DW-4	A1805 RL-	P4GB-DW-4	EA02RL-B-4			EA02RL-B-4			EA02RL-B-4		
ИЯ	7. T.		0,2		0,2		1			1					
напряжен		К-т тр-и Кл. т.	10000/100 0,2		10000/100 0,2		1						1		
Трансформаторы напряжения		3ab. №		B-C:7487	A-B:7757	B-C:7870				1					
Транс		Тип	НОЛ.08		10Л.08										
		Kj. t.	0,58		0,58		0,5			0,5			0,5		
горы тока		К-т тр-и	300/5		3/008		200/5			200/5			200/5		
Грансформаторы тока		3ab. Ne	A:66622	C:69551	A:13244	C:13164	A:005205	B:005206	C:005208	A:005210	B:005209	C:005207	A:067038	B:524987	C:524990
L		Тип					7O∏-0,66			70П-0,66			ТОП-0,66 А:067038		
	Наименование	присоединения	ВРУ-2 КПП-2 яч.4 ТПЛ-10	10kB, T-1	ВРУ-2 КПП-2 яч.16 ТПЛ-10	10kB, T-2	ТП 25-5 Т-2 0,4кВ ТОП-0,66 А:005205			ТП 25-5 Т-1 0,4кВ ТОП-0,66 A:005210			TII 25-6 0,4KB		
	•		1		2	. 7	3			4			5		

Таблица 2. Состав ИВК АИИС

Наименование, тип	Назначение	Кол-
Пиименовиние, тип	Пизничение	во, шт.
УСПД, «RTU-325»	Управление счетчиками электрической энергии,	1
	сбор и хранение результатов измерений, измерение	
	времени в шкале UTC, синхронизация шкал времени	
	часов счетчиков.	
Сервер АИИС с	Выполнение функций по автоматической обработке	1
установленным СПО «Альфа-	результатов измерений, хранение результатов	
Центр», HP Proliant DL380R04	измерений в базе данных, предоставление доступа к	
-	результатам измерений.	
Коммуникатор Switch	Связующий компонент для связи ИИК с ЛВС ОАО	1
HP4104GL	«Красноярский алюминиевый завод».	
GSM-модем FARGO	Связующий компонент для связи ИИК с ИВК.	1
MAESTRO 100		
Оптический преобразователь	Для осуществления обмена информацией	1
AE1	посредством интерфейса RS-232 между	
	компьютером и счетчиком электрической энергии,	
	имеющим оптический порт	

Таблица 3. Перечень программных средств ИВК.

Наименование программного обеспечения	Место установки		
Общесистемное ПО			
Microsoft Windows XP Professional SP2 rus	Сервер ИВК		
Microsoft Windows Server 2003	Сервер ИВК		
Microsoft.NET Framework 2.0/3.0	Сервер ИВК		
Пользовательское ПО			
Microsoft Office 2007 Professional	Сервер ИВК, АРМ		
ORACLE PE	Сервер ИВК		
Специализированное ПО			
Альфа ЦЕНТР PE Personal Edition (коммуникационный	Сервер ИВК		
сервер, расчетный сервер, модули администратора,			
инсталляционное ядро БД, модули управления системой)			
Альфа ЦЕНТР PE Personal Edition (модуль экранных форм,	APM		
графиков, отчеттов)			
«КриптоПро CSP»	Сервер ИВК		

Структура АИИС допускает изменение количества измерительных каналов с ИИК ТИ, аналогичными указанным в таблице 1, а также с ИИК ТИ отличными по составу от указанных в таблице 1, но совместимыми с измерительными каналами АИИС по электрическим, информационным и конструктивным параметрам.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Количество измерительных каналов
счетчиков электрической энергии, входящих в состав измерительных
каналов АИИС:
температура окружающего воздуха (кроме счетчиков), °С
напряжение, % от Uномот 90 до 110;
коэффициент мощности, соя ф (при измерении активной электрической энергии и мощности)
Коэффициент готовности не менее 0,992.

Приложение к свидетельству № ______ об утверждении типа средства измерений. Лист 7, всего листов 8. Таблица 4. Границы допускаемой относительной погрешности измерений активной (δ_W^A) и реактивной (δ_W^P) энергии ИК АИИС для значений тока 2, 5, 20, 100÷120 % от номинального и значений коэффициента мощности 0.5, 0.8, 0.865 и 1.

I 9/ am I		ик.	№№1, 2	ИК №№ 3, 4, 5		
$I,\%$ ot I_{hom}	cos ϕ	$\delta_{\it W}^{\it A},\pm\%$	$\delta_{W}^{P},\pm\%$	$\delta_{W}^{A},\pm\%$	δ_{W}^{P} ,±%	
5	0,5	5,4	2,9	5,3	2,5	
5	0,8	3	4,5	2,8	4,3	
5 .	0,865	2,7	5,6	2,4	5,3	
5	1	1,9	2,6	1,7	2,5	
20	0,5	3	2,1	2,7	1,4	
20	0,8	1,9	2,7	1,5	2,2	
20	0,865	1,8	3,2	1,3	2,7	
20	1	1,3	2	0,97	1,8	
100-120	0,5	2,3	1,9	1,9	1,1	
100-120	0,8	1,7	2,2	1,1	1,6	
100-120	0,865	1,6	2,5	1	1,9	
100-120	1	1,1	1,7	0,75	1,5	

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на титульный лист документа «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии филиала ООО «РУС-Инжиниринг» в г. Красноярске. Паспорт-формуляр».

комплектность

В комплект АИИС входят технические средства и документация, указанные в таблице 5.

Таблица 5

Технические средства ИИК ТИ в соответствии с таблицей 1					
Технические средства ИВК в соответствии с таблицей 2					
Документация					
«Система автоматизированная информационно-измерительная коммерческого учета					
электроэнергии филиала ООО «РУС-Инжиниринг» в г. Красноярске. Технорабочий проект.					
36143726.422231.153»					
«Система автоматизированная информационно-измерительная коммерческого учета					
электроэнергии филиала ООО «РУС-Инжиниринг» в г. Красноярске. Паспорт-формуляр.					
36143726.422231.153.ФО»					
«Система автоматизированная информационно-измерительная коммерческого учета					
электроэнергии филиала ООО «РУС-Инжиниринг» в г. Красноярске. Методика поверки.					
36143726.422231.153. Д1»					

ПОВЕРКА

Поверка измерительных каналов АИИС проводится в соответствии с документом «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии филиала ООО «РУС-Инжиниринг» в г. Красноярске. Методика поверки. 36143726.422231.153. Д1», утвержденной ГЦИ СИ СНИИМ «23» 06 2010 г.

Межповерочный интервал - 4 года.

Основное поверочное оборудование: миллитесламетр портативный ТП2-2У-01, мультиметр АРРА-109, вольтамперфазометр «Парма ВАФ-А», измеритель комплексных сопротивлений электрических цепей «Вымпел», часы «Электроника-65».

Поверка измерительных компонентов АИИС проводится в соответствии со следующими нормативными документами по поверке:

- Приложение к свидетельству №_____ об утверждении типа средства измерений. Лист 8, всего листов 8.
- измерительные трансформаторы тока по ГОСТ 8.217-2003 «Государственная система обеспечения единства измерений. Трансформаторы тока. Методика поверки»;
- измерительные трансформаторы напряжения по ГОСТ 8.216-88 «Государственная система обеспечения единства измерений. Трансформаторы напряжения. Методика поверки»;
- счетчики электрической энергии ЕвроАльфа в соответствии с документом "ГСИ. Счетчики электрической энергии многофункциональные ЕвроАльфа. Методика поверки" (ФГУ «РОСТЕСТ-МОСКВА» сентябрь 2007 г.);
- счетчики электрической энергии «Альфа A1800» в соответствии с документом МП-2203-0042-2006 «Счетчики электрической энергии трехфазные многофункциональные Альфа A1800. Методика поверки».
- УСПД «RTU-325» в соответствии с документом ДИЯМ.466453.005 МП.

НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ΓΟCT P 8.596-2002	Метрологическое обеспечение измерительных систем. Основные
	положения
ΓΟCT P 52323-05	Статические счетчики активной энергии классов точности 0,2S и 0,5S
ΓΟCT P 52425-05	Статические счетчики реактивной энергии
ГОСТ 26035-83	Счетчики электрической энергии переменного тока электронные. Общие
	технические условия
ГОСТ 7746-2001	Трансформаторы тока. Общие технические условия
ΓΟCT 1983-2001	Трансформаторы напряжения. Общие технические условия
36143726.422231.153	«Автоматизированная информационно-измерительная система
	коммерческого учета электроэнергии филиала ООО «РУС-Инжиниринг»
	в г. Красноярске. Технорабочий проект

ЗАКЛЮЧЕНИЕ

Тип «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии филиала ООО «РУС-Инжиниринг» в г. Красноярске, зав. № 1 утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен в эксплуатации согласно государственным поверочным схемам.

ИЗГОТОВИТЕЛЬ: ООО НПК «Спецэлектромаш»,

Адрес: 660123, г. Красноярск, ул. Парковая, 8

Исполнтельный директор ООО НПК «Спецэлектромаш»

_____Рудковский С. В.