ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Научно-производственная корпорация «Уралвагонзавод» с Изменением №1

Назначение средства измерений

Настоящее описание типа системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Научно-производственная корпорация «Уралвагонзавод» с Изменением №1 (далее АИИС КУЭ) является дополнением к описанию типа системы автоматизированной информационно-измерительной коммерческого учета электроэнергии ОАО «Научно-производственная корпорация «Уралвагонзавод», Свидетельство об утверждении типа RU.E.34.004.А № 40466, регистрационный № 44923-10, и включает в себя описание дополнительных измерительных каналов, соответствующих точкам измерений № 41-44.

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Научно-производственная корпорация «Уралвагонзавод» с Изменением №1 предназначена для измерений активной и реактивной электроэнергии, потребленной за установленные интервалы времени отдельными технологическими объектами ОАО «Научно-производственная корпорация «Уралвагонзавод»; сбора, обработки, хранения и передачи полученной информации. Результаты измерений системы могут быть использованы для коммерческих расчетов.

Описание средства измерений

АИИС КУЭ представляет собой многоуровневую систему с централизованным управлением и распределенной функцией измерения.

АИИС КУЭ решает следующие задачи:

- автоматические измерения 30-минутных приращений активной и реактивной электроэнергии, среднеинтервальной мощности;
- периодический (1 раз в полчаса, час, сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени состояния средств измерений и результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- автоматическое сохранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- предоставление по запросу контрольного доступа к результатам измерений, данных о состоянии объектов и средств измерений со стороны сервера организаций—участников оптового рынка электроэнергии;
- обеспечение защиты оборудования, программного обеспечения и хранящихся в АИИС КУЭ данных от несанкционированного доступа на физическом и программном уровне (установка пломб, паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
 - конфигурирование и настройка параметров АИИС КУЭ;
 - автоматическое ведение системы единого времени в АИИС КУЭ (коррекция времени).

АИИС КУЭ представляет собой многоуровневую систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень – измерительные трансформаторы тока (ТТ) класса точности 0,5 и 0,5S по ГОСТ 7746, напряжения (ТН) класса точности 0,2 и 0,5 по ГОСТ 1983 и счётчики активной и реактивной электроэнергии СЭТ-4ТМ.03М классов точности 0,5S по ГОСТ Р 52323-2005 для

активной электроэнергии и 1,0 по ГОСТ Р 52425-2005 для реактивной электроэнергии, установленные на объектах, указанных в таблице 1 (4 точки измерений).

- 2-й уровень устройство сбора и передачи данных (УСПД) на базе «ЭКОМ-3000».
- 3-й уровень информационно-измерительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, устройство синхронизации системного времени, автоматизированные рабочие места персонала (АРМ) и программное обеспечение (ПО).

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по проводным линиям связи поступает на входы УСПД, где осуществляется хранение измерительной информации, ее накопление и передача накопленных данных по проводным линиям на третий уровень системы (сервер БД), а также отображение информации по подключенным к УСПД устройствам.

На верхнем – третьем уровне системы выполняется дальнейшая обработка измерительной информации, вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление справочных и отчетных документов. Передача информации в организации—участники оптового рынка электроэнергии осуществляется от сервера БД по проводным линиям связи.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ), включающей в себя приемник сигналов точного времени, таймеры УСПД, счетчиков, сервера БД. Сличение времени УСПД с сигналами подключенного к нему приемника сигналов точного времени производится постоянно. Коррекция производится автоматически при рассогласовании ± 2 с. Сличение времени счетчика с временем УСПД осуществляется один раз в сутки. Коррекция времени в счетчиках производится автоматически при условии превышения допустимого значения рассогласования, равного ± 2 с, но не чаще, чем раз в сутки. Сличение времени сервера БД с временем УСПД осуществляется один раз в три минуты. Коррекция времени в сервере БД производится автоматически при условии превышения допустимого значения рассогласования, равного ± 2 с. Погрешность системного времени не превышает ± 5 с.

Программное обеспечение

В АИИС КУЭ используется программно-технический комплекс (ПТК) «ЭКОМ», Госреестр № 19542-05, представляющий собой совокупность технических устройств (аппаратной части ПТК) и программного комплекса (ПК) «Энергосфера» в состав которого входит специализированное ПО указанное в таблице 1. ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных, передаваемых из УСПД ИВКЭ в ИВК по интерфейсу Ethernet, является кодирование данных, обеспечиваемое программными средствами ПК «Энергосфера». Уровень защиты программного обеспечения используемого в АИИС КУЭ от непреднамеренных и преднамеренных изменений — С (в соответствии с МИ 3286-2010).

Таблица 1 - Идентификационные данные программного обеспечения (ПО)

Наименова-	Идентификацион-	Номер версии	Цифровой идентифи-	Алгоритм вычис-
ние про-	ное наименование	(идентификаци-	катор программного	ления цифрового
граммного	программного	онный номер)	обеспечения (кон-	идентификатора
обеспечения	обеспечения	программного	трольная сумма ис-	программного
		обеспечения	полняемого кода)	обеспечения
ПТК Энер-	Консоль админист-	6.3.87.929	89A8C50D743DF1E4B	MD5
госфера	ратора		E25D9B1268016B9	
	AdCenter.exe			
	Редактор расчетных	6.3.319.5557	233A47BA83EF0044E	
	схем		9F1D28D405AFC91	
	AdmTool.exe			
	Конфигуратор	6.3.78.1130	12CAD3D07BC1055D	
	УСПД		5D5EB69F4B8A58C7	
	config.exe			
	АРМ Энергосфера	6.3.114.1431	9C1D42E261668DE69	
	ControlAge.exe		5CBAD1DB79E6C98	
	Центр экспор-	6.3.200.2455	0B99864EF70B377FF0	
	та/импорта		B64F3FAF38A36C	
	expimp.exe			
	Сервер опроса	6.3.113.1685	64E744082178C5934D	
	PSO.exe		2867677F95544C	
	Модуль ручного	6.3.51.274	5835C2ACCB14D6247	
	ввода		96128A32674A91E	
	HandInput.exe			

Метрологические и технические характеристики

Таблица 2. - Состав измерительных каналов АИИС и их основные метрологические характеристики

							Метрологиче-	
Наименование объекта и номер точки измерений		Состав измерительного канала					ские характери-	
							стики ИК	
		TT TH				Вид элек- тро-	Основ-	По- греш- ность
			Счетчик	УСПД	энер- гии	ная по- греш- ность,	в ра- бочих	
							%	усло- виях, %
1		2	3	4	5	6	7	8
			3НОЛ.06-	COT		Актив-		
4.4	ПС -75 РУ-6 кВ	ТПЛ-10-М	6У3	CЭT- 4TM.03M.01		ная,	± 1,0	± 2,2
41 I СШ, яч. 8 СВВ	400/5 Кл.т.0,5S	6000/√3/ 100/√3 Кл.т 0,2	Кл.т. 0,5S/1,0	ЭКОМ-	реак-	± 2,4	± 4,3	
42	ПС -75 РУ- 0,4кВ секцион- ный автомат	ТШЛ-0,66 1500/5 Кл.т.0,5S	-	CЭT- 4TM.03M.09	3000 3000	Актив- ная,	± 1,0	± 2,2
72				Кл.т. 0,5S/1,0		реак- тивная	± 2,3	± 4,2

	1	2	3	4	5	6	7	8
43	ПС-108 РУ-6 кВ І СШ, ф.66,яч.6	/11/11/5	3HOЛ.06. 4-6УЗ 6000/√3/ 100/√3 Кл.т 0,2	СЭТ- 4ТМ.03М.01 Кл.т. 0,5S/1,0		Актив- ная,	± 1,0	± 2,2
44	ПС-108 РУ-6 кВ 4СШ, ф.66,яч.52	ТПЛ-10-М 400/5 Кл.т.0,5S	3HOЛ.06. 4-6УЗ 6000/√3/ 100/√3 Кл.т 0,2	СЭТ- 4ТМ.03М.01 Кл.т. 0,5S/1,0		реак- тивная	± 2,4	± 4,3

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовая);
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95;
 - 3. Нормальные условия:
 - параметры сети: напряжение $(0.98 \div 1.02)$ Uном; ток $(1 \div 1.2)$ Іном, $\cos \varphi = 0.9$ инд.;
 - температура окружающей среды (20 ± 5) °C.
 - 4. Рабочие условия:
 - параметры сети: напряжение $(0.9 \div 1.1)$ Uhom; ток $(0.02 \div 1.2)$ Іном;
- допускаемая температура окружающей среды для измерительных трансформаторов от минус 40 до + 70 °C, для счетчиков от минус 40 до + 60 °C; для УСПД от минус 10 до + 50 °C и сервера от + 15 до + 35 °C;
- 5. Погрешность в рабочих условиях указана для I=0.05 Іном $\cos \phi = 0.8$ инд. и температуры окружающего воздуха в месте расположения счетчиков электроэнергии от 0 до + 35 °C;
- 6. Трансформаторы тока по ГОСТ 7746-2001, трансформаторы напряжения по ГОСТ 1983-2001, счетчики электроэнергии по ГОСТ Р 52323-2005 в режиме измерения активной электроэнергии и ГОСТ Р 52425-2005 в режиме измерения реактивной электроэнергии;
- 7. Допускается замена измерительных трансформаторов и счетчиков на аналогичные (см. п. 6 Примечаний) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2. Допускается замена УСПД на однотипный утвержденного типа. Замена оформляется актом в установленном на объекте порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.
- 8. В составе измерительных каналов, перечисленных в таблице 2, применяются измерительные компоненты утвержденных типов.

Надежность применяемых в системе компонентов:

- электросчётчик СЭТ-4ТМ.03М параметры надежности: среднее время наработки на отказ Т = 140000 ч, среднее время восстановления работоспособности tв = 168 ч;
- УСПД ЭКОМ-3000 среднее время наработки на отказ не менее T=75000 ч, среднее время восстановления работоспособности t=24 ч;
- сервер параметры надежности: коэффициент готовности $K\Gamma=0.99$, среднее время восстановления работоспособности tB=30 мин.

Надежность системных решений:

- резервирование питания УСПД с помощью источника бесперебойного питания и устройства ABP;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии организацию с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;

- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком;
 - выключение и включение УСПД.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - испытательной коробки;
 - УСПД;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - УСПД;
 - сервера.

Защита программного обеспечения обеспечивается применением электронной цифровой подписи, разграничением прав доступа, использованием ключевого носителя.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о состоянии средств измерений (функция автоматизирована);
- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- один раз в сутки (функция автоматизирована).

Глубина хранения информации:

- электросчетчик СЭТ-4ТМ.03М тридцатиминутный профиль нагрузки в двух направлениях не менее 100 суток; при отключении питания не менее 10 лет;
- УСПД ЭКОМ-3000 суточные данные о тридцатиминутных приращениях электропотребления по каждому каналу и электропотребление за месяц по каждому каналу 50 сут (функция автоматизирована); сохранение информации при отключении питания 10 лет;
- Сервер БД хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

Знак утверждения типа наносится типографским способом на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Научно-производственная корпорация «Уралвагонзавод» с Изменением №1.

Комплектность средства измерений

Комплектность АИИС КУЭ определяется проектной документацией на создание первоначальной и добавленной частей АИИС КУЭ, а также эксплуатационной документацией – руководство по эксплуатации системы и /или на ее формуляр, в который входит полный перечень технических средств, из которых комплектуются основные и добавленные измерительные каналы АИ-ИС КУЭ.

Поверка

осуществляется по методике поверки МП 44923-11 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Научно-производственная корпорация «Уралвагонзавод» с Изменением №1. Методика поверки. ЭПК521/09-1.МП» утвержденной ФГУП «ВНИИМС» в ноябре 2011г.

Средства поверки - по НД на измерительные компоненты:

- TT πο ΓΟCT 8.217-2003;
- ТН по МИ 2845-2003, МИ 2925-2005 и/или по ГОСТ 8.216-88;
- Счетчики СЭТ-4ТМ.03М по методике поверки ИЛГШ.411152.145РЭ1;
- УСПД ЭКОМ-3000 по методике поверки «ГСИ. Программно-технический измерительный комплекс ЭКОМ. Методика поверки. МП 26-262-99».

Сведения о методиках (методах) измерений

Метод измерений приведен в Паспорте-формуляре на систему автоматизированную информационно–измерительную коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Научно-производственная корпорация «Уралвагонзавод» № ЭПК521/09-1.ФО.

Нормативные и технические документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Научно-производственная корпорация «Уралвагонзавод» с Изменением №1

ГОСТ 1983-2001 «Трансформаторы напряжения. Общие технические условия».

ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия».

ГОСТ Р 52425-2005 «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии».

ГОСТ Р 52323-2005 «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S».

ГОСТ 34.601-90 «Информационная технология. Комплекс стандартов на автоматизи-

рованные системы. Автоматизированные системы. Стадии создания».

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие тех-

нические условия.

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные

положения.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- осуществление торговли и товарообменных операций.

Изготовитель

ООО «УВЗ-Энерго»

Адрес: 622018, Свердловская обл., г. Н. Тагил, ул. Юности, д. 10.

Тел.: (3435) 377-431, факс (3435) 377-432

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМС»

Адрес: 119361, Москва, ул. Озерная, 46

Тел.: 8 (495) 437 55 77, Факс: 8 (495) 437 56 66

Электронная почта: office@vniims.ru

Аттестат аккредитации № 30004-08 от 27.06.2008 года.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Е.Р. Петросян

,,	**	2011 г
"	<i>>></i>	20111