

СОГЛАСОВАНО
Начальник ГИИ СИ «Воентест»
32 УНИИИ МО РФ

ТЕСТ С.И. Донченко
23»
23»
2009 г.

Калибраторы универсальные Time Electronics 5025

Внесены в Государственный реестр средств измерений Регистрационный № 43230-09 Взамен №

Выпускаются по технической документации фирмы «Time Electronics Ltd.», Великобритания.

Назначение и область применения

Калибраторы универсальные Time Electronics 5025 (далее – калибраторы) предназначены для воспроизведения напряжения и силы постоянного и переменного тока, электрического сопротивления постоянному току, электрической емкости, индуктивности, частоты, периода и скважности, электрической мощности, моделирования термопар и термометров сопротивления. Калибраторы применяются для поверки, калибровки приборов и устройств измерительного типа при их разработке, производстве и эксплуатации.

Описание

Принцип действия калибраторов основан на автоматическом управлении встроенными прецизионными источниками сигналов различной формы, опорными из которых являются источник напряжения постоянного тока, термопреобразователь напряжения переменного тока в постоянное, набор высокоточных и высокостабильных резисторов, емкостей и индуктивностей.

Калибратор является микропроцессорным прибором генераторного типа, оснащен программой самодиагностики, которая может быть запущена в любой момент. В функции безопасности входит защита от поражения электрическим током.

Конструктивно калибратор выполнен в ударопрочном металлическом корпусе, имеет 7 разрядный светодиодный индикатор.

Калибратор обладает следующими дополнительными возможностями: защитой от перегрузки по выходу, функцией подстройки (девиации) выходного параметра, программированием, поддержкой интерфейсов GPIB (IEEE-488), RS-232 и дополнительно USB, возможностью установки в 19-дюймовую стойку.

Калибратор дополнительно может быть оснащен усилителем напряжения 9760 и модулем для поверки токовых клещей 9780.

По условиям эксплуатации калибраторы относятся к группе 1 по ГОСТ 22261-94 с рабочей температурой от 15 до 25 °C, при относительной влажности воздуха до 80 %, за исключением воздействия конденсированных и выпадающих осадков.

Основные технические характеристики.

Основные технические характеристики калибраторов приведены в таблицах 1 – 11

Таблица 1

		-		
Боспроизводимая	рерхние пре-	Разрешение	Пределы допускаемой погрешности воспроизведения, ±	Выходное
величина	делы диапазо-		при температуре (22 ± 3) °C	сопротивле-
	нов воспроиз-			ние, Ом
	ведения			
	22 MB	0,1 мкВ	$\pm (20.10^{-6} \cdot \text{Uyct} + 3 \text{ MKB})$	10
Напряжение	220 MB	1 MKB	$\pm (20.10^{\circ} \cdot \text{Uvcr} + 4 \text{ MKB})$	10
постоянного	2,2 B	1 мкВ	$\pm (15.10^{-6} \cdot 1) \text{ (IVCT} + 10 \text{ MKB)}$	0,1
тока	22 B	10 MKB	$+(15.10^{-6}\cdot I_{VCT} + 75 \text{ MgB})$	0,1
	220 B	100 MKB	$+(15.10^{-6})$. I when $+(15.10^{-6})$ is $+(15.10^{-6})$ is $+(15.10^{-6})$. I when $+(15.10^{-6})$ is $+(15.10^{-6}$	٠ ٧
	1050 B	1 мВ	$\pm (15.10^{\circ} \text{ Cycl} + 2.0 \text{ MAD})$ $\pm (15.10^{\circ} \text{ Uvcr} + 1.5 \text{ MB})$	10
С внешней опцией -	Диапазон вос-	1 MB	$\pm (5.10^4 \cdot \text{Uycr} + 2 \text{ MB})$	1
усилитель	произведения			
напряжения 9760	от 1 до 80 В			
Примечание - Uycr - установленное значение напряжения.	установленное зна	чение напряжен	ИЯ.	

Таблица 2

			т—						, -					
сопротивле-	ние, Ом		10	10	10	10	20	20	10	10	10	10	50	20
воспроизведения	при температуре (22 ± 3) ⁰ C		$\pm (0.05 \cdot 10^{-2} \cdot \text{Uyct} + 50 \text{ MKB})$	$\pm (0.03 \cdot 10^{-2} \cdot \text{Uyct} + 20 \text{ MKB})$	$\pm (0.05 \cdot 10^{-2} \cdot \text{Uycr} + 25 \text{ MkB})$	$\pm (0.08 \cdot 10^{-2} \cdot \text{Uvcr} + 30 \text{ MkB})$	$+(0.05\cdot10^{-2}\cdot11v_{\rm CT} + 500~{\rm MgB})$	$\pm (0.05 \cdot 10^{-2} \cdot \text{Uycr} + 1 \text{ MB})$	$\pm (0.05 \cdot 10^{-2} \cdot \text{Uycr} + 50 \text{ MKB})$	$\pm (0.04 \cdot 10^{-2} \cdot \text{Uycr} + 25 \text{ MKB})$	$\pm (0.05 \cdot 10^{-2} \cdot \text{Uycr} + 30 \text{ MkB})$	$\pm (0.08 \cdot 10^{2} \cdot \text{Uvcr} + 50 \text{ MKB})$	$+(0.05\cdot10^{-2}\cdot1\text{VcT} + 500\text{ MgB})$	$+(0.05\cdot10^{-2})$
частот			от 15 до 45 Гц	от 45 Гц до 1 кГц	от 1 до 10 кГц	от 10 до 20 кГц	от 20 до 100 кГц	от 100 до 300 кГц	от 15 до 45 Гц	от 45 Гц до 1 кГц	от 1 до 10 кГц	от 10 до 20 кГц	от 20 до 100 кГц	от 100 до 300 кГц
			1 мкВ						1 мкВ					
делы диапазо-	нов воспроиз-	ведения	22 MB						220 MB					
величина				Напряжение	переменного	тока								
	делы диапазо-	делы диапазо- нов воспроиз- при температуре $(22\pm3)^{0}$ С	делы диапазо- нов воспроиз- ведения ведения $\frac{1}{1}$ нов ведения	делы диапазо- нов воспроиз- ведениячастот при температуре (22 ± 3) 0 С веденияпри температуре (22 ± 3) 0 С ведения22 мВ1 мкВот 15 до 45 Γ ц \pm (0,05·10- 2 ·Uycr + 50 мкВ)	делы диалазо- частот воспроизведения нов воспроиз- при температуре (22 ± 3) ⁰ C ведения от 15 до 45 Гц ± (0,05·10 ⁻² ·Uycr + 50 мкВ) от 45 Гц до 1 кГц ± (0,03·10 ⁻² ·Uycr + 20 мкВ)	делы диапазо- нов воспроиз- ведения частот воспроизведения 22 мВ 1 мкВ от 15 до 45 Гц ± (0,05·10 ⁻² ·Uycr + 50 мкВ) от 45 Гц до 1 кГц ± (0,03·10 ⁻² ·Uycr + 20 мкВ) от 1 до 10 кГц	делы диапазо- частот воспроизведения нов воспроиз- при температуре (22 ± 3) ⁰ C ведения от 15 до 45 Гц ± (0,05·10 ⁻² ·Uycr + 50 мкВ) от 45 Гц до 1 кГц ± (0,03·10 ⁻² ·Uycr + 20 мкВ) от 10 до 20 кГц ± (0,08·10 ⁻² ·Uycr + 30 мкВ)	делы диапазо- частот воспроизведения нов воспроиз- при температуре (22 ± 3) °C ведения от 15 до 45 Гц ± (0,05·10²·Uycr + 50 мкВ) 22 мВ 1 мкВ от 15 до 45 Гц ± (0,05·10²·Uycr + 20 мкВ) от 10 до 20 кГц ± (0,03·10²·Uycr + 25 мкВ) ± (0,08·10²·Uycr + 30 мкВ) от 20 до 100 кГц + (0.05·10²·Uycr + 500 мкВ)	делы диапазо- частот воспроизведения нов воспроиз- ведения при температуре (22 ± 3) °C ведения от 15 до 45 Гц ± (0,05·10 ⁻² ·Uycr + 50 мкВ) 22 мВ 1 мкВ от 15 до 45 Гц ± (0,05·10 ⁻² ·Uycr + 50 мкВ) от 10 до 20 кГц ± (0,05·10 ⁻² ·Uycr + 25 мкВ) от 10 до 20 кГц ± (0,08·10 ⁻² ·Uycr + 30 мкВ) от 20 до 100 кГц ± (0,05·10 ⁻² ·Uycr + 500 мкВ) т 100 до 300 кГц ± (0,05·10 ⁻² ·Uycr + 1 мВ)	делы диапазо- частот воспроизведения нов воспроиз- ведения при температуре (22 ± 3) °C 22 мВ 1 мкВ от 15 до 45 Гц ± (0,05·10-²·Uycr + 50 мкВ) от 1 до 10 кГц ± (0,03·10-²·Uycr + 20 мкВ) от 10 до 20 кГц ± (0,05·10-²·Uycr + 30 мкВ) от 20 до 100 кГц ± (0,05·10-²·Uycr + 30 мкВ) от 20 до 100 кГц ± (0,05·10-²·Uycr + 1 мВ) 1 мкВ от 15 до 45 Гц ± (0,05·10-²·Uycr + 1 мВ)	делы диапазо- частот воспроизведения нов воспроиз- нов воспроиз- ведения три температуре (22 ± 3) °C 22 мВ 1 мкВ от 15 до 45 Гц ± (0,05·10²-Uyст + 50 мкВ) от 1 до 10 кГц ± (0,03·10²-Uyст + 25 мкВ) от 10 до 20 кГц ± (0,05·10²-Uyст + 25 мкВ) от 20 до 100 кГц ± (0,05·10²-Uyст + 500 мкВ) т 100 до 300 кГц ± (0,05·10²-Uyст + 500 мкВ) т 10 до 20 кГц ± (0,05·10²-Uyст + 500 мкВ) т 10 до 300 кГц ± (0,05·10²-Uyст + 50 мкВ) т 10 до 45 Гц до 1 кГц ± (0,05·10²-Uyст + 50 мкВ)	делы диапазо- нов воспроиз- ведения частот воспроизведения при температуре (22 ± 3) °C 22 мВ 1 мкВ от 15 до 45 Гц ± (0,05·10 ⁻² ·Uycr + 50 мкВ) 22 мВ 1 мкВ от 15 до 45 Гц ± (0,05·10 ⁻² ·Uycr + 50 мкВ) от 1 до 10 кГц ± (0,05·10 ⁻² ·Uycr + 25 мкВ) ± (0,05·10 ⁻² ·Uycr + 30 мкВ) от 20 до 100 кГц ± (0,05·10 ⁻² ·Uycr + 50 мкВ) ± (0,05·10 ⁻² ·Uycr + 50 мкВ) 220 мВ 1 мкВ от 15 до 45 Гц ± (0,05·10 ⁻² ·Uycr + 50 мкВ) 220 мВ 1 мкВ от 15 до 45 Гц ± (0,05·10 ⁻² ·Uycr + 50 мкВ) 220 мВ 1 мкВ от 45 Гц до 1 кГц ± (0,05·10 ⁻² ·Uycr + 25 мкВ) от 45 Гц до 1 кГц ± (0,05·10 ⁻² ·Uycr + 25 мкВ) ± (0,05·10 ⁻² ·Uycr + 25 мкВ)	делы диапазо- нов воспроиз- ведения частот воспроизведения при температуре (22 ± 3) °C 22 мВ 1 мкВ от 15 до 45 Гц ± (0,05·10²-Uyст + 50 мкВ) 22 мВ 1 мкВ от 15 до 45 Гц ± (0,05·10²-Uyст + 50 мкВ) от 1 до 10 кГц ± (0,05·10²-Uyст + 25 мкВ) ± (0,05·10²-Uyст + 30 мкВ) от 20 до 100 кГц ± (0,05·10²-Uyст + 50 мкВ) ± (0,05·10²-Uyст + 50 мкВ) 220 мВ 1 мкВ от 15 до 45 Гц ± (0,05·10²-Uyст + 50 мкВ) от 1 до 1 до 1 кГц ± (0,05·10²-Uyст + 25 мкВ) ± (0,05·10²-Uyст + 25 мкВ) от 1 до 1 до 20 кГц ± (0,05·10²-Uyст + 50 мкВ) ± (0,05·10²-Uyст + 50 мкВ)	делы диапазо- частот воспроизведения нов воспроиз- при температуре (22 ± 3) °C ведения от 15 до 45 Гц ± (0,05·10²-Uycr + 50 мкВ) 22 мВ от 45 Гц до 1 кГц ± (0,05·10²-Uycr + 20 мкВ) от 10 до 20 кГц ± (0,05·10²-Uycr + 20 мкВ) от 10 до 20 кГц ± (0,05·10²-Uycr + 30 мкВ) от 20 до 100 кГц ± (0,05·10²-Uycr + 50 мкВ) т 100 до 300 кГц ± (0,05·10²-Uycr + 50 мкВ) т 10 до 20 кГц ± (0,05·10²-Uycr + 50 мкВ) от 10 до 20 кГц ± (0,05·10²-Uycr + 50 мкВ) от 10 до 20 кГц ± (0,05·10²-Uycr + 50 мкВ) от 10 до 20 кГц ± (0,05·10²-Uycr + 50 мкВ) от 20 до 100 кГц ± (0,05·10²-Uycr + 50 мкВ) т (0,05·10²-Uycr + 50 мкВ) ± (0,05·10²-Uycr + 50 мкВ)

7	
таблицы	
43	ı
родолжение	
戸	١

продолжение таолицы 2	bi 2				
Воспроизводимая	Верхние пре-	Разрешение	Диапазон	Пределы допускаемой погрешности	Выходное
величина	делы диапазо-		частот	воспроизведения	сопротивле-
	нов воспроиз-			при температуре (22 \pm 3) 0 C	ние, Ом
	2,2 B	10 мкВ	от 15 до 45 Гц	$\pm (0.08 \cdot 10^{-2} \cdot \text{Uycr} + 200 \text{ MKB})$	не более 0,1
Напряжение			от 45 Гц до 1 кГц	$\pm (0.03 \cdot 10^{-2} \cdot \text{Uyct} + 100 \text{ MKB})$	не более 0,1
переменного			от 1 до 10 кГц	$\pm (0.03 \cdot 10^{-2} \cdot \text{Uyct} + 150 \text{ MKB})$	не более 0,1
тока	,		от 10 до 20 кГц	$\pm (0.08 \cdot 10^{-2} \text{ Uyct} + 350 \text{ MKB})$	не более 0,1
			от 20 до 100 кГц	$\pm (0.09 \cdot 10^{-2} \cdot \text{Uyct} + 900 \text{ MKB})$	не более 0,5
			от 100 до 300 кГц	$\pm (0.1 \cdot 10^{-2} \cdot \text{Uycr} + 5 \text{ MB})$	не более 0,5
			от 300 кГц до 1 МГц	$\pm (1.10^{-2} \cdot \text{Uycr} + 10 \text{ MB})$	не более 0,5
	20 B	100 MKB	от 20 до 100 кГц	$\pm (0.15 \cdot 10^{-2} \cdot \text{Uycr} + 15 \text{ MB})$	не более 5
	22 B	100 мкВ	от 15 до 45 Гц	$\pm (0.05 \cdot 10^{-2} \cdot \text{Uyct} + 50 \text{ MKB})$	не более 5
			от 45 Гц до 1 кГц	$\pm (0.03 \cdot 10^{-2} \cdot \text{Uycr} + 20 \text{ MKB})$	не более 5
			от 1 до 10 кГц	$\pm (0.05 \cdot 10^{-2} \cdot \text{Uycr} + 25 \text{ mkB})$	не более 5
			от 10 до 20 кГц	$\pm (0.08 \cdot 10^{-2} \cdot \text{Uycr} + 30 \text{ MKB})$	не более 5
	220 B	1 MB	от 45 Гц до 1 кГц	$\pm (0.06 \cdot 10^{-2} \cdot \text{Uyct} + 20 \text{ MB})$	не более 5
	1050 B	10 MB	от 45 Гц до 1 кГц	$\pm (0.08 \cdot 10^{-2} \cdot \text{Uyct} + 90 \text{ MB})$	не более 10
С внешней опцией -	диапазон	1 MB	от 15 Гц до 10 кГц	$\pm (5.10^{4} \cdot \text{Uyct} + 2 \text{ MB})$	1
усилитель	от 1 до 80 В				
напряжения 9760					
Примечание Uycт – установленное значение напряжения.	становленное знач	ение напряжен	ия.		

$\pm (0.01 \cdot 10^{-2})$ 1 MKA $\pm (0.01 \cdot 10^{-2})$ 1 MKA	Пределы допускаемой погрешности воспроизведения при температуре (22 ± 3) 0 C $\pm (0,00 + 15 \text{HA})$ $\pm (0,006 \cdot 10^{-2} \cdot \text{lycr} + 40 \text{HA})$ $\pm (0,004 \cdot 10^{-2} \cdot \text{lycr} + 3 \text{мкA})$ $\pm (0,004 \cdot 10^{-2} \cdot \text{lycr} + 35 \text{мкA})$	Разрешение 1 нА 10 нА 10 нА 100 нА 1 мкА	Верхние пре- делы диапазо- нов воспроиз- ведения 220 мкА 2,2 мА 220 мА 220 мА 220 мА	Воспроизводимая величина Сила постоянного тока
	/			
	$\pm (0.004 \cdot 10^{-2} \cdot \text{lyct} + 3 \text{ MKA})$	100 нА	220 MA	тока
220 MA 100 HA	$\pm (0.004 \cdot 10^{-2} \cdot \text{lyct} + 200 \text{ HA})$	10 HA	22 MA	постоянного
22 MA 10 HA 220 MA 100 HA	$\pm (0.006 \cdot 10^{-2} \cdot \text{lycr} + 40 \text{ HA})$	10 нА	2,2 MA	Сила
2,2 MA 10 HA 22 MA 10 HA 220 MA 100 HA	± (0,0 + 15 HA)	1 HA	220 мкА	
220 MKA 1 HA 2,2 MA 10 HA 22 MA 10 HA 220 MA 100 HA			ведения	
ведения 1 нА 220 мкА 1 нА 2,2 мА 10 нА 22 мА 10 нА 220 мА 100 нА			нов воспроиз-	
нов воспроиз- ведения 1 нА 220 мкА 1 нА 2,2 мА 10 нА 220 мА 10 нА 220 мА 10 нА	при температуре (22 ± 3) °C		делы диапазо-	величина
делы диапазо- нов воспроиз- ведения 220 мкА 10 нА 22 мА 10 нА 220 мА 100 нА	Пределы допускаемой погрешности воспроизведения	Разрешение	Верхние пре-	Воспроизводимая

	Пределы допускаемой погрешности воспроизведения	при температуре (22 ± 3) °C			. (A \$ 10. ² I 50 A)*	± (0,5:10 ·1ycr + 50 mA).	+ (0 \$.10 ⁻² . Ir.m. + 150 a. (A)*	± (0,5'10'1)ct + 150 MA)					Пределы доп	при температуре (22 ± 3) °C				$\pm (0.05 \cdot 10^{-2} \cdot 1yct + 300 \text{ HA})$			••				$\pm (0.2 \cdot 10^{-2} \cdot \text{lycr} + 5 \text{ MA})$				$_{0}$ 65 $_{\Gamma II}$ $\pm (0.5 \cdot 10^{-2}) \text{ycr} + 700 \text{ MA})^{*}$
	Разрешение							ı		илы тока;			- Диапазон частот			от 20 Ги до 1 кГи	от 1 до 5 кГц	от 20 Ги до 1 кГи	от 1 до 5 кГц	от 20 Гц до 1 кГц	от 1 до 5 кГц	от 20 Гц до 1 кГц	от 1 до 5 кГц	от 20 до 500 Гц	от 20 до 500 Гц		от 45 до 65 Гц	от 65 до 901 ц	от 45 до 65 Гц
										начение с	IA.		Разреше-	ние		10 нА		10 нА		100 нА		1 MKA		10 MKA	100 MKA		ı		1
1.3	Верхние пре-	делы диапазо-	нов воспроиз-	ведения	диапазон	от 10 до 110 А		от 110 до 1100 А		Примечание Іуст – установленное значение силы тока;	 по данным фирмы-изготовителя. 		Верхние пре-	делы диапазо-	нов воспроиз-	220 мкА		2.2 MA		22 MA	-	220 мА		2,2 A	22 A	диапазон	от 10 до 110 А		от 110 до 1100 А
Продолжение таблицы 3	Воспроизводимая	величина			Сила	постоянного тока	с внешней опцией -	модуль поверки то-	ковых клещей 9/80)	Примечание Iycı	* – по данным ф	Таблица 4	Воспроизводимая	величина			Сила	переменного	TOKA							С внешней опцией -	модуль поверки то-	ковых клещей 9780	

Примечание: Іуст – установленное значение силы тока; * — по данным фирмы-изготовителя.

Таблица 5

O morning a			
Воспроизводимая	Верхние пределы диапа-	Разрешение	Пределы допускаемой погрешности воспроизвеления
величина	зонов воспроизведения		при температуре (22 ± 3) °C
	20 OM	1 мОм	$\pm (0.01 \cdot 10^{-2} \cdot \text{Ryct} + 7 \text{ MOM})$
Электрическое	мО 666,66	1 мОм	$\pm (0.01 \cdot 10^{-2} \cdot \text{Ryct} + 7 \text{ MOM})$
сопротивление	MO 666,966	1 мОм	$\pm (0.01 \cdot 10^{-2} \cdot \text{Ryct} + 5 \text{ MOM})$
постоянному	9,999 кОм	1 O _M	$\pm (0.02 \cdot 10^{-2} \cdot \text{Rvcr} + 20 \text{ MOM})$
току	99,999 кОм	1 O _M	$\pm (0.01 \cdot 10^{-2} \cdot \text{Rvcr} + 1.0\text{M})$
	999,99 кОм	$10 \mathrm{OM}$	$\pm (0.01 \cdot 10^2 \cdot \text{Rycr} + 10 \cdot 0\text{M})$
	9,9999 MO _M	10 O _M	$\pm (0.02 \cdot 10^{-2} \cdot \text{RvcT} + 100 \text{OM})$
	120 MO _M	100 OM	$\pm (0.1 \cdot 10^{-2} \cdot \text{Rvcr} + 1 \text{ KOM})$
Примечание Rycт	Примечание Rycr - установленное значение электрического сопротивления.	ктрического сопротивлен	

Таблица 6

Воспроизводимая	Номинальные значения	Частота, Гц	Пределы допускаемой погрешности воспроизведения, ±
величина			при температуре (22 \pm 3) 0 С
	1 нФ	1000	$\pm (0.5 \cdot 10^{-2} \cdot \text{Cycr} + 10 \text{ n}\Phi)$
Электрическая	10 нФ	1000	$\pm (0.5 \cdot 10^{-2} \cdot \text{Cycr} + 10 \text{ n}\Phi)$
емкость	100 нФ	1000	$\pm (0.5 \cdot 10^{-2} \cdot \text{CvcT})$
	1 мкФ	1000	$\pm (0.25 \cdot 10^{-2} \cdot \text{CvcT})$
	10 мкФ	1000	$\pm (0.5 \cdot 10^{-2} \cdot \text{CvcT})$
	100 мкФ	100	$\pm (0.5 \cdot 10^{-2} \cdot \text{Cycr})$
Примечание Суст	Примечание Суст - установленное значение эле	ектрической емкости.	

_
Į
K
<u>'2</u>
ĕ

	Пределы допускаемой относительной погрешности	воспроизведения при температуре (22 \pm 3) 9 C					+1,0%						
	Частота, Гц		1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	100
	Номинальные значения		1 мГн	1,9 мГн	5 мГн	10 мГн	19 мГн	50 мГн	100 мГн	190 мГн	500 мГн	1 Гн	10 LH
таслица /	Воспроизводимая	величина		Индуктивность									

∞	
Таблица	

C STITION T			
Воспроизводимая	Диапазон воспроизведе-	Диапазон частот, Гц	Пределы допускаемой относительной погрещности
величина	ния		воспроизведения при температуре (22 \pm 3) °C, %
Мощность	от 0,2 ВА до 23,1 кВА		± 0,08
постоянного тока			
Мощность	от 0,2 ВА до 23,1 кВА	от 45 до 400	± 0,12
переменного тока			
$(при \cos \varphi = 1)$			
Угол фазового	от минус 90 до 90 граду-	от 45 до 99	± 0,25
сдвига	COB	от 100 до 400	± 1,0

0	١
113	1
ПИ	1
کر)
r	,

г		_		_		_	
Пределы допускаемой относительной погрешности	воспроизведения при температуре (22 \pm 3) °C. %	± 1·10 ⁻⁵	± 1·10 ⁻⁴	± 1·10 ⁻³	± 1·10 ⁻⁵	± 1·10 ⁴	± 1·10 ⁻³
Форма и амплитуда	сигнала	меандр 2 В	трапецеидальный 1 В	синусоидальный 1 В	меандр 2 В	трапецеидальный 1 В	синусоидальный 1 В
Номинальные значения		от 0,1 Гц до 10 МГц	$20, 50, 100 \mathrm{MFu}$	$100\mathrm{MFu}$	от 100 нс до 10 с	50 нс, 20 нс, 10 нс	10 нс
Воспроизводимая	величина	Частота			Период	······································	

Таблица 10

	Пределы допускаемой погрешности воспроизведения	при температуре (22 ± 3) °C, °C	±0,15	±0,3	+0,5	+0,4	+0,4	±0.5	+ 0,8	±2,0	€'0∓	±2,0	± 1,0	±2,0	±0,5	+0,4	±0,3
	Диапазон температур, ⁰ С		от минус 210 до 150	от 150 до 1200	от минус 270 до 190	от 190 до 1250	от минус 200 до 150	от 150 до 400	от минус 50 до 800	от 800 до 1750	от минус 50 до 850	от 850 до 1750	от 100 до 1200	от 1200 до 1800	от минус 270 до 260	от 260 до 1300	от минус 50 до 1000
1 बंधामाय 10	Тип термопары		 3		¥				R		S		В		Z		П

Тэбпитэ 11

	Пределы допускаемой погрешности воспроизведения	± 0.07	
	Диапазон температур, ⁰ С	от минус 250 до 850	
таолица тт	Тип датчика температуры	Pt100	

Рабочие условия эксплуатации:	
Температура окружающего воздуха, °С	от 15 до 25.
Напряжение питания частотой 50 ± 1 Гц, В	220 ± 22 .
Масса, кг, не более	16,5.
Габаритные размеры (длина х ширина х высота), мм	447 x 470 x 152.

Знак утверждения типа

Знак утверждения типа наносится на титульный лист руководства по эксплуатации методом компьютерной графики и на лицевую панель калибратора в виде наклейки.

Комплектность

В комплект поставки входят: калибратор универсальный Time Electronics 5025 (с опциями в соответствии с заказом), сетевой кабель, одиночный комплект ЗИП, комплект эксплуатационных документов, методика поверки.

Поверка

Поверка калибраторов проводится в соответствии с документом «Калибраторы универсальные Time Electronics 5025 фирмы «Time Electronics Ltd.». Методика поверки», утвержденным начальником ГЦИ СИ «Воентест» 32 ГНИИИ МО РФ в декабре 2009 года и входящим в комплект поставки.

Средства поверки: система измерительная автоматизированная постоянного напряжения K6-10 (КСМИ.411711.004 TУ), установка измерительная K2-86 (КСМИ.411711.003 TУ), вольтметр-калибратор многофункциональный BK2-40 (КМСИ.411182.002 ТУ), термоэлектрические преобразователи переменного тока ПТТЭ (ТУ 50-266-80), комплексы поверочные портативные КПП-1 и КПП-2 (кл. т. 0,01), мост переменного тока Р5083 (ТУ 25-7516.0027-88), катушка электрического сопротивления Р310 (ТУ 25-04.3368-78), частотомер электронно-счетный вычислительный Ч3-64 (ДЛИ2.721.006 ТУ), фазометр Д5781 (ТУ 25-0414.0011-82).

Межповерочный интервал – 1 год.

Нормативные и технические документы

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».

Техническая документация фирмы-изготовителя.

Заключение

Тип калибраторов универсальных Time Electronics 5025 утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации.

Изготовитель

Фирма «Time Electronics Ltd.», Великобритания. Unit 11 Botany Industrial Estate, Tornbridge, Kent, TN9 1RH.

Заявитель

ООО «Тайм Электроникс», Россия. 125284, г. Москва, Скаковая аллея, д. 11.

От заявителя:

Генеральный директор ООО «Тайм Электронике»

TP.A. Сергеев