ОПИСАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

СОГЛАСОВАНО Руководитель ГЦИ СИ «СвязьТест» ФГУП ЦНИИС

В.П. Лупанин

2 " <u>сенти Гл</u> 2009 г.

М.П.

Анализаторы систем связи AnCom TDA-9

Внесены в Государственный реестр средств измерений Регистрационный номер 41787-09 Взамен

Выпускаются по техническим условиям ТУ 4221-016-11438828-09.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Анализаторы систем связи AnCom TDA-9 (далее - анализаторы) предназначены для измерения параметров каналов тональной частоты ($T\Psi$) с 2-проводным или 4-проводным аналоговым стыком, образованных в коммутируемой телефонной сети общего пользования (сети $T\Phi$ OП), сети связи общего пользования (CCOП), спутниковых системах передачи (CCCП) и т.п.

ОПИСАНИЕ

Анализаторы состоят из генератора, формирующего нормированные электрические измерительные сигналы, и измерительно-анализирующего устройства. Функционирование анализаторов основано на реализации измерительных процедур, рекомендованных Международным союзом электросвязи (МСЭ-Т). Анализаторы обеспечивают:

- измерение параметров каналов ТЧ и телефонных каналов, создаваемых аналоговыми или цифровыми системами передачи и линейными кодеками; при этом используются измерительные сигналы, основанные на гармоническом колебании;
- формирование речевых измерительных сигналов для контроля качества каналов, образованных в сетях с коммутацией пакетов и (или) использованием речевых кодеков (вокодеров); с помощью объективного метода определения показателя качества передачи речи MOS (Mean Opinion Score Средняя экспертная оценка разборчивости речи) в соответствии с рекомендацией МСЭ-Т Р.862;
- измерение параметров электрических сигналов акустической сигнализации для контроля показателей функционирования сетей ТфОП (ССОП) по коэффициенту потерь вызовов (КПВ);
 - измерение затухания и задержки эхосигнала для проверки влияния эхо;
- измерение параметров двухтонального многочастотного сигнала (DTMF), а также контроль искажений передачи символов DTMF.

Функционирование анализаторов, а также обработка, накопление, выдача и представление измерительной информации обеспечивается встроенным или внешним универсальным управляющим компьютером (персональным компьютером) и специализированной управляющей компьютерной программой.

Анализаторы обеспечивают выполнение измерений в автоматическом режиме, представление результатов в графической и табличной формах, сопоставление результатов с заданными нормами. Анализаторы обеспечивают накопление получаемых результатов измерений и значений параметров настройки в базе данных (БД), что позволяет посредством персонального компьютера (ПК) выводить результаты на экран и бумажный носитель, осуществлять их вторичную обработку, сохранять в долговременной памяти.

Анализаторы соответствуют общим техническим условиям по ГОСТ 22261-94, включая требования электробезопасности, а по устойчивости к климатическим и механическим воздействиям относятся к группе 3. Анализаторы соответствуют условиям электромагнитной совместимости по ГОСТ Р 51318.22-99 для объектов класса А.

Анализаторы изготавливаются и поставляются в различных вариантах исполнения, отличающихся видом управляющего устройства (встроенное, внешнее) и составом функций.

При использовании ПК, он должен удовлетворять следующим требованиям: процессор Pentium-IV и выше; установленная операционная система (ОС) Windows; свободный объем жесткого диска не менее 10 ГБ; объем ОЗУ не менее 512 МБ; наличие порта универсальной последовательной шины (USB Host).

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Параметр		Значение
Модуль полного	600	
Пределы допуска	емой абсолютной погрешности модуля полного	
входного/выходн	±12	
Затухание асимм	≥43	
Генератор		
Пределы	одночастотного гармонического сигнала (в диапазоне (20 -	
допускаемой	4000 Гц): в диапазоне (минус 40 - 10) дБм;	±0,2
относительной	(минус 70 – минус 40) дБм	±0,5
погрешности	многочастотного сигнала (МЧС) - 38 частот в диапазоне	
установки	(100 - 3800) Гц при выходном уровне: 0 дБм	$\pm 0,5$
уровня	(с возможностью уменьшения до минус 40 дБм)	
мощности, дБ	4-частотного сигнала (854, 866, 1364, 1396 Гц) при выходном	
	уровне: 0 дБм	$\pm 0,5$
	(с возможностью уменьшения до минус 70 дБм)	
	двухтонального многочастотного (DTMF) сигнала (НЧ и	
	ВЧ-составляющие согласно рекомендации МСЭ-Т Q.23) при	
	выходном уровне каждой составляющей 0 дБм	±0,5
	(с возможностью уменьшения до минус 40 дБм)	
	псевдослучайного шумового сигнала (рекомендация МСЭ-Т	
	О.131) в диапазоне (350 – 550) Гц при выходном уровне: 0 дБм	$\pm 0,5$
	(с возможностью уменьшения до минус 70 дБм)	
	речевого сигнала при выходном уровне: 10 дБм	±1
	(с возможностью уменьшения до минус 40 дБм)	
	сигнала для измерения эхо при выходном уровне: 0 дБм	±0,5
	(с возможностью уменьшения до минус 40 дБм)	
П	гармонического сигнала с частотой f, задаваемой в диапазоне	
Пределы	(20 – 4000) Гц с шагом 1 Гц	$\pm (f \times 10^{-4} + 0.01)$
допускаемой абсолютной	двухтонального многочастотного (DTMF) сигнала, частотные	
	составляющие f которого, выбираемые из рядов номинальных	
погрешности установки	значений (НЧ 697, 770, 852, 941 Гц и ВЧ 1209, 1336, 1447,	
установки частоты, Гц	1633 Гц), могут быть изменены в пределах (минус 5 - 5) % от	
	номинального значения	±0,2
Уровень собствен	нных шумов (в заблокированном состоянии генератора) в полосе	
частот (300 - 3400	-80	

праметр	Значение
меритель	
ределы допускаемой относительной погрешности измерения уровня	
омонического сигнала или уровня составляющей спектра с шириной 25 Гц, дБ	
в диапазоне (минус 70 - 10) дБм	±0,2
в диапазоне (минус 100 - минус 70) дБм	±0,5
ределы допускаемой относительной погрешности измерения затухания уровня	
гнала, дБ	102
в диапазоне (минус 20 - 80) дБ	±0,2
з диапазоне (80 - 100) дБ	<u>±1</u>
ределы допускаемой абсолютной погрешности измерения частоты (f), Гц	±f×10 ⁻⁴
з диапазоне (300 - 3400) Гц	IIXIU
веделы допускаемой абсолютной погрешности измерения изменения частоты в	
нале связи, Гц	±0,1
з диапазоне (минус 20 - 20) Гц	±0,1
ределы допускаемой относительной погрешности измерения уровня шума, взвешенного в полосе частот (300 - 3400) Гц и псофометрического	
взвешенного в полосе частот (300 - 3400) г ц и псофометрического екомендация МСЭ-Т О.41), с подавлением и без подавления сигнала, дБ	
	±1
з диапазоне (минус 70 - минус 10) дБм	± 2
в диапазоне (минус 90 - минус 70) дБм ределы допускаемой относительной погрешности измерения отношения уровня	12
гнала к уровню шума в диапазоне (300 – 3400) Гц, дБ	
тнала к уровню шума в диапазоне (500 – 5400) г ц, дв в диапазоне (0 - 50) дБ	±1
з диапазоне (0 - 30) дБ з диапазоне (50 - 60) дБ	±2
веделы допускаемой относительной погрешности измерения максимального на	12
кундном интервале уровня импульсной помехи с подавлением сигнала при	
гистрации импульсных помех, дБ	
в диапазоне (минус 20 - 10) дБ	±2
ределы счета событий превышения уровнем импульсных помех установленного	
рога	0 - 9999
ределы допускаемой относительной погрешности измерения минимального на	
кундном интервале уровня перерыва при регистрации перерывов связи, дБ	
в диапазоне (минус 40 - 0) дБ	±1
ределы счета перерывов связи ниже установленного порога с длительностью:	
3 мс, (3 - 30) мс, (30 - 300) мс, до 300 мс, 300 мс - 60 с, более 60 с, 3 мс - 60 с	0 - 9999
ределы допускаемой абсолютной погрешности измерения максимального на	
кундном интервале скачка фазы $\Delta \phi$, град	
в диапазоне (5 - 45) град	$\pm \Delta \phi \times 10^{-1}$
ределы счета событий скачков фазы выше установленного порога	0 - 9999
ределы допускаемой относительной погрешности измерения максимального на	
кундном интервале скачка амплитуды, дБ	
в диапазоне (2 - 9) дБ	±0,5
ределы счета событий скачков амплитуды выше установленного порога	0 - 9999
ределы допускаемой относительной погрешности измерения по МЧС частотной	
рактеристики затухания уровня (АЧХ) в диапазоне частот (300 - 3400) Гц, дБ	
в диапазоне (минус 20 - 20) дБ	± 0.3
в диапазоне (20 – 60) дБ	±0,5
ределы допускаемой абсолютной погрешности измерения по МЧС частотной	-
рактеристики относительного группового времени прохождения сигнала (ГВП)	
диапазоне частот (300 - 3400) Гц, мс	
в диапазоне (0 - 10) мс	±0,3
ределы допускаемой относительной погрешности измерения по МЧС частотной	
рактеристики отношения уровней частотных составляющих сигнала в	
напазоне частот (300 - 3400) Гц к соответствующим составляющим уровня шума,	
	l I

Параметр	Значение
Пределы допускаемой относительной погрешности измерения защищенности	
сигнала от шума квантования (рекомендации МСЭ-Т 0.131 и 0.132) в диапазоне	
частот (300 - 3400) Гц, дБ	
в диапазоне (0 - 60) дБ	±1
в диапазоне (60 - 70) дБ	±2
Пределы допускаемой относительной погрешности измерения частотной	
характеристики защищенности сигнала от продуктов модуляции кратностью	
k×50 Гц, дБ	
в диапазоне (10 - 60) дБ	±1
в диапазоне (60 - 70) дБ	±2
Пределы допускаемой абсолютной погрешности измерения 4-частотным методом	
(по рекомендации МСЭ-Т О.42) коэффициента нелинейности (К) 2-го порядка,	
3-го порядка, 2-го и 3-го порядка, %	
в диапазоне (0,1 - 100) %	±K×10 ⁻¹
Пределы допускаемой абсолютной погрешности измерения размаха дрожания	
фазы (Ф) в диапазоне частот (20 - 300) Гц, град	
в диапазоне (0,2 - 45) град	$\pm(\Phi\times5\times10^{-2}+0,2)$
Пределы допускаемой абсолютной погрешности измерения размаха дрожания	
амплитуды (А) в диапазоне частот (20 - 300) Гц, %	
в диапазоне (0,4 - 70) %	$\pm (A\times 5\times 10^{-2}+0,2)$
Пределы допускаемой относительной погрешности измерения минимального	
значения суммарного уровня 2-частотных составляющих сигнала DTMF, дБ	
в диапазоне (минус 35 - 3) дБм	±1
Пределы допускаемой относительной погрещности измерения максимальной по	
абсолютному значению разности уровней 2-частотных составляющих сигнала	
DTMF с сохранением знака разности, дБ	
в диапазоне (минус 15 - 15) дБ	±1
Пределы допускаемой абсолютной погрешности измерения отклонения частот	
2-частотных составляющих сигнала DTMF от номинальных значений, %	
в диапазоне (0 - 2,5) %	±0,1
Пределы допускаемой относительной погрешности измерения частотной	
характеристики затухания уровня сигнала (АЧХ) в диапазоне частот	
(300 - 3400) Гц с использованием речевого сигнала, дБ	
в диапазоне (минус 12 - 40) дБ	±2
Пределы допускаемой абсолютной погрешности измерения размаха дрожания	
задержки передачи (разность максимального и минимального значений задержки	
передачи - джиттер задержки) с использованием речевого сигнала, мс	
в диапазоне (0 - 500) мс	<u>±1</u>
Пределы допускаемой абсолютной погрешности измерения частотной	
характеристики модуля полного сопротивления (Z) нагрузки в диапазоне	
(300 - 3400) Гц с использованием МЧС, Ом	±(7×5×10 ⁻² ±1)
в диапазоне (3 - 300) Ом	$\begin{array}{c c} \pm (Z \times 5 \times 10^{-2} + 1) \\ \pm Z \times 3 \times 10^{-2} \end{array}$
в диапазоне (300 - 3000) Ом	TCX3X10
Пределы допускаемой относительной погрешности измерения частотной	
характеристики затухания асимметрии нагрузки в диапазоне (300 - 3400) Гц с использованием МЧС, дБ	
в диапазоне (15 - 50) дБ	±0,5
в диапазоне (13 - 30) дБ в диапазоне (50 - 60) дБ	±1
Пределы допускаемой относительной погрешности измерения частотной	-1
характеристики переходного затухания в диапазоне (300 - 3400) Гц с	
использованием МЧС, дБ	
в диапазоне 80 дБ	±0,5
Пределы допускаемой относительной погрешности измерения затухания эхо, дБ	±0,3
в диапазоне (12 - 20) дБ	±3
в диапазоне (12 - 20) дБ в диапазоне (20 - 30) дБ	±1
в диапазоне (20 - 50) дБ в диапазоне (30 - 50) дБ	$\begin{bmatrix} \pm 0,5 \end{bmatrix}$
в диапазоне (50 - 50) дБ в диапазоне (50 - 60) дБ	±1
ο Αμπίτοσμο (20 - 00) Μη	1 +1

		Значение			
лютной погрешн	ости измерения задержки (Т) эхо, мс				
в диапазоне (10 - 2000) мс					
сительной погре	шности измерения уровня	±(T×10 ⁻² +2)			
электрических сигналов акустической сигнализации, дБ					
) дБм		±0,5			
инус 20) дБм		±1			
у <mark>стической сигна</mark>	лизации от шума в полосе частот				
		<u>±1</u>			
	лизации, Гц				
		±0,5			
устической сигна	лизации, с				
	V-1	±0,2			
	лизации, с	10.1			
		±0,1			
_					
		10.1			
		±0,1			
лютнои погрешн	ости измерения напряжения (О)				
100) и (мирус 1	5 _ 15) B	±(U×10 ⁻² +0,5)			
		1 (0×10 +0,3)			
потнои погрешн	ости измерения величины				
минус 5) и (5 - 70)) MA	$\pm (I \times 10^{-2} + 0.5)$			
Minige 5) II (5 70	7) 1111	1 = (1.110 , 0,0)			
	с частотой. Гц	50±2,5			
го тока		220+22-33			
Питание от встроенного аккумуляторного источника питания постоянного тока					
или комплектного источника питания с номинальным выходным напряжением					
постоянного тока, В Потребляемая мощность, ВА, не более					
Масса без внешнего источника питания, кг, не более					
· · · · · · · · · · · · · · · · · · ·		1,5			
		168			
ſ		37			
лиапазон темпе	<u> </u>	5 - 40			
· · · · · · · · · · · · · · · · · · ·		90			
		минус 25 - 55			
влажность воздуха при температуре +25 °С, %, до					
BUSKHUGAF BUSIN	иха пли температуре +75 °C % до	1 93			
влажность возду енее	уха при температуре +25 °C, %, до	95			
	сосительной погре устической сигна дБм инус 20) дБм осительной погре устической сигна долютной погрешнустической сигна д (700 - 1050) Гц олютной погрешнустической сигна д - 2) с олютной погрешнустической сигна д - 2) с олютной погрешнустической сигна д - 2) с олютной погрешнустической сигна д - 100) и (минус 1 олютной погрешниминус 5) и (5 - 70 ого тока кумуляторного и ка питания с ном да диапазон темпе влажность возду	ресительной погрешности измерения уровня устической сигнализации, дБ дБм динус 20) дБм досительной погрешности измерения защищенности устической сигнализации от шума в полосе частот долютной погрешности измерения частоты устической сигнализации, Гц долютной погрешности измерения задержки устической сигнализации, с долютной погрешности измерения длительности устической сигнализации, с долютной погрешности измерения периода следования устической сигнализации, с долютной погрешности измерения периода следования устической сигнализации, с долютной погрешности измерения напряжения (U) долютной погрешности измерения напряжения (U) долютной погрешности измерения величины долютной погрешности измерения напряжения (U) долютной погрешности измерения периода следования долютной погрешности измерения долютности измерения долютности долютности измерения долютности измерения долютности долютности измерения долют			

знак утверждения типа

Знак утверждения типа размещается на корпусе анализатора AnCom TDA-9.

КОМПЛЕКТНОСТЬ

Наименование комплектующего изделия	Условное обозначение	Кол- во, шт.	Условие поставки комплектующего
Блок анализатора	TDA9	1	Обязательно
Источник питания	С9-ИП	1	Обязательно
Кабель заземления ИП	K6	1	Обязательно
Кабель сетевой ИП	КП	1	Обязательно
Кабель соединительный ИП	K5	1	Обязательно
Кабель заземления	K1	1	Обязательно
Кабель USB/A-B	-	1	Обязательно
Кабель измерительный VFC	КИ13	2	Обязательно
Кабель измерительный PSTN	КИ17	1	Обязательно
Адаптер измерительный PSTN	АИ1	1	По заказу
Адаптер измерительный PSTN	АИ2	1	По заказу
Нагрузка 600 Ом	P600	1	По заказу
Эквивалент асимметрии 60 дБ	Д300/301.8	_1	По заказу
Сумка транспортная малая	C9-CT	1	По заказу
Сумка транспортная большая	СТУ2	1	По заказу
Коробка транспортная картонная	C9-KT	1	По заказу
Компакт-диск (CD)	Аналитик-ТС	1	Обязательно
Руководство по эксплуатации (брошюра)	4221-016-11438828-09РЭ	1	Обязательно
Формуляр (брошюра)	4221-016-11438828-09ФО	1	Обязательно
Методика поверки (брошюра)	4221-016-11438828-09МП	1	Обязательно

ПОВЕРКА

Поверка проводится в соответствии с документом «Анализатор систем связи AnCom TDA-9. Методика поверки» 4221-016-11438828-09МП, утвержденным ГЦИ СИ «СвязьТест» ФГУП ЦНИИС в сентябре 2009 года.

Основные средства поверки:

- вольтметр переменного тока В3-63,
- частотомер электронно-счетный вычислительный Ч3-64/1,
- магазины сопротивления (2) МСР-63,
- вольтметр универсальный В7-65,
- источник питания постоянного тока Б5-50.

Межповерочный интервал – два года.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 22261-94. Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ Р 51318.22-99. Совместимость технических средств электромагнитная. Радиопомехи индустриальные от оборудования информационных технологий. Нормы и методы испытаний

Рекомендация МСЭ-Т О.41. Псофометры для использования на каналах телефонного типа, 10/94

Рекомендация МСЭ-Т О.42. Аппаратура для измерения нелинейных искажений методом перекрестной модуляции при использовании 4-частотного сигнала, 11/88

Рекомендация МСЭ-Т О.131. Прибор для измерения искажений квантования с использованием псевдослучайного шумового испытательного сигнала, 11/88

Рекомендация МСЭ-Т О.132. Прибор для измерения искажений квантования с использованием синусоидального испытательного сигнала, 11/88

Рекомендация МСЭ-Т Q.23. Технические характеристики тастатурных телефонных аппаратов, 11/88

Рекомендация МСЭ-Т Р.862. Оценка правильности восприятия качества речи (PESQ): Объективный метод для оценки качества речи при сквозной передаче данных для узкополосных телефонных сетей и речевых кодеков, 02/01

Техническая документация на анализатор систем связи AnCom TDA-9.

ЗАКЛЮЧЕНИЕ

Тип анализаторов систем связи AnCom TDA-9 утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации.

Изготовитель:

Общество с ограниченной ответственностью

«Аналитик ТелекомСистемы»

Адрес:

125424 Москва, Волоколамское шоссе, 73

ТелекомСистемы

Директор

Общества с ограниченной ответственностью

«Аналитик ТелекомСистемы»

В.Е. Чистов