ОПИСАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

Измерители параметров полупроводниковых приборов 4155C, 4156C

Внесены в Государственный реестр средств измерений Регистрационный номер № 39905-10 Взамен №

Выпускаются по технической документации фирмы «Agilent Technologies», США.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Измерители параметров полупроводниковых приборов 4155С, 4156С (далее по тексту — измерители) предназначены для измерения и автоматизации контроля электрических параметров полупроводниковых приборов, анализа их функциональных зависимостей, отображения на дисплее вольтамперных характеристик (ВАХ) исследуемого объекта в виде графиков и таблиц, расчета на их основе стандартных параметров исследуемого объекта, формирования и заполнения отчета о полученных результатах.

Область применения измерителей – проведение работ в процессах наладки, ремонта и лабораторных исследованиях на предприятиях электронной и радиотехнической промышленности, в научно-исследовательских институтах и научно-производственных организациях.

ОПИСАНИЕ

Принцип работы измерителей основан на измерении значений тока (напряжения) на электродах тестируемого полупроводникового прибора при формировании на них последовательности значений напряжения или тока. Формируемая величина рассматривается в качестве аргумента, а измеряемая величина — в качестве функции измеренной ВАХ в координатах напряжение-ток или ток-напряжение. ВАХ служит основой для определения или расчета интересующих параметров тестируемого полупроводникового прибора. Графическое отображение ВАХ формируется путем линейной аппроксимации ее значений в промежутках между измеренными точками.

При наличии у тестируемого полупроводникового прибора управляющего (база, затвор) и/или вспомогательного (подложка) электродов, прибор обеспечивает измерение семейства ВАХ по значениям одного или двух параметров, каждый из которых может быть задан в виде последовательности значений токов или напряжений формируемых на электродах тестируемого полупроводникового прибора.

В состав измерителей параметров полупроводниковых приборов 4155С, 4156С могут входить следующие блоки, расширяющие функциональные возможности измерителей:

- блок расширения 41501B, предназначенный для расширения функциональных возможностей измерителей путем добавления дополнительных каналов источника/измерителя; модулей генераторов импульсов или их комбинации, а также модуля заземления;
- блоки коммутации E5250A, B2200A, B2201A, предназначенные для расширения функциональных возможностей измерителей путем увеличения количества измерительных каналов, а также подключения внешних генераторов импульсов, измерителей параметров иммитанса и других приборов.

Отличие измерителей параметров полупроводниковых приборов 4155C, 4156С заключается в различных функциональных возможностях и технических характеристиках.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Таблица 1 – Конфигурация измерителей

Описание встраиваемых модулей	Количест	во модулей	Диапазоны измерения/
Описание встраиваемых модулеи	4155C	4156C	воспроизведения
Модуль источника/измерителя	1		2 мкВ – 100 В
средней мощности (MPSMU)	4 -	10 фА – 100 мА	
Модуль источника/измерителя с		4	2 мкВ — 100 В
высоким разрешением (HRSMU)		4	1 φA – 1 A
Модуль источника напряжения (VSU)	2	2	1 мB – 20 B
Модуль измерителя напряжения (VMU)	2	2	2 мкB – 20 B

Таблица 2 – Основные метрологические характеристики модулей в режиме измерения напряжения постоянного тока

Модуль	Пределы измерений	Разрешение	Пределы допускаемой абсолютной погрешности измерения
	± 2 B	2 мкВ	$\pm (0.02 \times 10^{-2} \times U_{\text{изм.}} + 0.7 \text{ MB})$
MPSMU	± 20 B	20 мкВ	$\pm (0.02 \times 10^{-2} \times U_{\text{изм.}} + 2 \text{ MB})$
	± 40 B	40 мкВ	$\pm (0.02 \times 10^{-2} \times U_{\text{изм.}} + 3 \text{ MB})$
	± 100 B	100 мкВ	$\pm (0.02 \times 10^{-2} \times U_{\text{изм.}} + 5 \text{ MB})$
	± 2 B	2 мкВ	$\pm (0.01 \times 10^{-2} \times U_{\text{изм.}} + 0.2 \text{ MB})$
HRSMU -	± 20 B	20 мкВ	$\pm (0.01 \times 10^{-2} \times U_{\text{изм.}} + 1 \text{ MB})$
IIICSIVIO	± 40 B	40 мкВ	$\pm (0.015 \times 10^{-2} \times U_{M3M} + 2 \text{ MB})$
	± 100 B	100 мкВ	$\pm (0.02 \times 10^{-2} \times U_{\text{изм.}} + 5 \text{ MB})$
VMU	± 2 B	2 мкВ	$\pm (0.02 \times 10^{-2} \times U_{\text{M3M}} + 0.2 \text{ MB})$
V 1V1O	± 20 B	20 мкВ	$\pm (0.02 \times 10^{-2} \times U_{\text{изм.}} + 1 \text{ MB})$

Примечание – $U_{\text{изм.}}$ – измеренное значение напряжения постоянного тока.

Таблица 3 – Основные метрологические характеристики модулей в режиме источника напряжения постоянного тока

Модуль	Пределы	Разрешение	Пределы допускаемой абсолютной
тчтодуль	воспроизведения	т азрешение	погрешности воспроизведения
	± 2 B	100 мкВ	$\pm (0.03 \times 10^{-2} \times U_{BOCRD} + 0.9 \text{ MB})$
MPSMU	± 20 B	1 мВ	$\pm (0.03 \times 10^{-2} \times U_{BOCIID} + 4 \text{ MB})$
WII SIVIO	± 40 B	2 мВ	$\pm (0.03 \times 10^{-2} \times U_{BOCII} + 7 \text{ MB})$
	± 100 B	5 мВ	$\pm (0.04 \times 10^{-2} \times U_{BOCRD} + 15 \text{ MB})$
	± 2 B	100 мкВ	$\pm (0.02 \times 10^{-2} \times U_{BOCHD} + 0.4 \text{ MB})$
HRSMU	± 20 B	1 мВ	$\pm (0.02 \times 10^{-2} \times U_{BOCIID} + 3 \text{ MB})$
THASIMO	± 40 B	2 мВ	$\pm (0.025 \times 10^{-2} \times U_{BOCIID} + 6 \text{ MB})$
	± 100 B	5 мВ	$\pm (0.03 \times 10^{-2} \times U_{BOCIID} + 15 \text{ MB})$
VSU	± 20 B	20 мкВ	$\pm (0.02 \times 10^{-2} \times U_{BOCRIP} + 1 \text{ MB})$

Примечание – $U_{воспр.}$ – воспроизведенное значение напряжения постоянного тока.

Таблица 4 – Основные метрологические характеристики модулей в режиме измерения силы постоянного тока

Модуль	Пределы измерений	Разрешение	Пределы допускаемой абсолютной погрешности измерения
	±1 нА	0,01 пА	$\pm (0.5 \times 10^{-2} \times I_{\text{H3M}} + 3 \text{ mA})$
MPSMU	± 10 нА	0,01 пА	$\pm (0.5 \times 10^{-2} \times I_{\text{изм.}} + 5 \text{ nA})$
	± 100 нА	0,1 пА	$\pm (0.1 \times 10^{-2} \times I_{\text{изм.}} + 30 \text{ пA})$

Продолжение таблицы 4

ие таолицы 4	T	П
•	Разрешение	Пределы допускаемой абсолютной
измерений	1 dispersional	погрешности измерения
± 1 мкА	0,001 нА	$\pm (0.1 \times 10^{-2} \times I_{\text{изм.}} + 0.2 \text{ нA})$
± 10 мкА	0,01 нА	$\pm (0.1 \times 10^{-2} \times I_{\text{M3M.}} + 3 \text{ HA})$
± 100 мкA	0,1 нА	$\pm (0.1 \times 10^{-2} \times I_{\text{M3M.}} + 20 \text{ HA})$
± 1 мA	0,001 мкА	$\pm (0.1 \times 10^{-2} \times I_{\text{M3M.}} + 0.3 \text{ MKA})$
± 10 мA	0,01 мкА	$\pm (0.1 \times 10^{-2} \times I_{\text{изм.}} + 2 \text{ мкA})$
± 100 мА	0,1 мкА	$\pm (0.1 \times 10^{-2} \times I_{\text{M3M}} + 30 \text{ MKA})$
± 10 πA	0,001 пА	$\pm (4 \times 10^{-2} \times I_{\text{изм.}} + 0.02 \text{ nA})$
± 100 πA	0,001 пА	$\pm (4 \times 10^{-2} \times I_{\text{изм.}} + 0.04 \text{ пA})$
± 1 нA	0,01 пА	$\pm (0.5 \times 10^{-2} \times I_{\text{изм.}} + 0.4 \text{ пA})$
± 10 нА	0,01 пА	$\pm (0.5 \times 10^{-2} \times I_{\text{M3M.}} + 2 \text{ nA})$
± 100 нА	0,1 пА	$\pm (0.1 \times 10^{-2} \times I_{\text{изм.}} + 20 \text{ пA})$
± 1 мкА	0,001 нА	$\pm (0.1 \times 10^{-2} \times I_{\text{изм.}} + 0.2 \text{ HA})$
± 10 мкА	0,01 нА	$\pm (0.05 \times 10^{-2} \times I_{\text{\tiny H3M.}} + 2 \text{ HA})$
± 100 мкA	0,1 нА	$\pm (0.05 \times 10^{-2} \times I_{\text{изм.}} + 20 \text{ HA})$
± 1 мA	0,001 мкА	$\pm (0.04 \times 10^{-2} \times I_{\text{H3M.}} + 0.2 \text{ MKA})$
± 10 мA	0,01 мкА	$\pm (0.04 \times 10^{-2} \times I_{\text{изм.}} + 2 \text{ мкA})$
± 100 mA	0,1 мкА	$\pm (0.1 \times 10^{-2} \times I_{\text{M3M.}} + 20 \text{ MKA})$
	Пределы измерений ± 1 мкА ± 10 мкА ± 100 мкА ± 1 мА ± 100 мА ± 100 мА ± 100 пА ± 100 пА ± 1 нА ± 100 нА ± 100 нА ± 1 мКА ± 10 мКА ± 1 мКА	Пределы измерений

Примечание – $I_{\text{изм.}}$ – измеренное значение силы постоянного тока.

Таблица 5 — Основные метрологические характеристики модулей в режиме воспроизведения силы постоянного тока

Модуль	Пределы	Разрешение	Пределы допускаемой абсолютной
	воспроизведения		погрешности измерения
	± 1 нА	0,1 пА	$\pm (0.5 \times 10^{-2} \times I_{BOCRD} + 3 \text{ mA})$
	± 10 нА	1 пА	$\pm (0.5 \times 10^{-2} \times I_{Bocnp} + 7 \text{ nA})$
	± 100 нА	10 nA	$\pm (0.12 \times 10^{-2} \times I_{BOCRD} + 50 \text{ mA})$
	± 1 мкА	0,1 нА	$\pm (0.12 \times 10^{-2} \times I_{BOCRD} + 0.4 \text{ HA})$
MPSMU	± 10 мкА	1 нА	$\pm (0.12 \times 10^{-2} \times I_{BOCRD} + 5 \text{ HA})$
	± 100 мкA	10 нА	$\pm (0.12 \times 10^{-2} \times I_{BOCRD} + 40 \text{ HA})$
	± 1 мA	0,1 мкА	$\pm (0.12 \times 10^{-2} \times I_{BOCRIP} + 0.5 \text{ MKA})$
	± 10 mA	1 мкА	$\pm (0.12 \times 10^{-2} \times I_{BOCRID} + 4 MKA)$
	± 100 мA	10 мкА	$\pm (0.12 \times 10^{-2} \times I_{BOCRIP.} + 50 \text{ MKA})$
	± 10 пА	0,001 пА	$\pm (4 \times 10^{-2} \times I_{BOCRD} + 0.4 \text{ mA})$
	± 100 πA	0,001 пА	$\pm (4 \times 10^{-2} \times I_{BOCRD} + 0.4 \text{ nA})$
	± 1 нА	0,01 пА	$\pm (0.5 \times 10^{-2} \times I_{BOCRD} + 0.7 \text{ nA})$
	± 10 нA	0,01 пА	$\pm (0.5 \times 10^{-2} \times I_{BOCRIP} + 4 \text{ mA})$
	± 100 нA	0,1 пА	$\pm (0.12 \times 10^{-2} \times I_{BOCRD} + 40 \text{ mA})$
HRSMU	± 1 мкА	0,001 нА	$\pm (0.12 \times 10^{-2} \times I_{BOCRD} + 0.4 \text{ HA})$
	± 10 мкА	0,01 нА	$\pm (0.07 \times 10^{-2} \times I_{BOCRD} + 4 \text{ HA})$
	± 100 мкА	0,1 нА	$\pm (0.07 \times 10^{-2} \times I_{BOCRD} + 40 \text{ HA})$
	± 1 мA	0,001 мкА	$\pm (0.06 \times 10^{-2} \times I_{BOCRD} + 0.4 \text{ MKA})$
ĺ	± 10 mA	0,01 мкА	$\pm (0.06 \times 10^{-2} \times I_{BOCIID} + 4 MKA)$
	± 100 mA	0,1 мкА	$\pm (0.12 \times 10^{-2} \times I_{\text{воспр.}} + 40 \text{ мкA})$

Примечание – $I_{воспр.}$ – воспроизведенное значение силы постоянного тока.

0.5	
Общие технические характеристики:	00 064
напряжение сети питания переменного тока, В	90 – 264
частота сети питания, Гц	
потребляемая мощность, В-А, не более	
габаритные размеры (длина × ширина × высота), мм	
измерителя 4155C/4156C	$600 \times 426 \times 235$
– блока расширения 41501В	
– блока коммутации E5250A	$600 \times 430 \times 230$
– блока коммутации B2200A/B2201A	$600 \times 430 \times 320$
масса, кг, не более:	
измерителя 4155C/4156C	
 – блока расширения 41501B 	
– блока коммутации E5250A	
– блока коммутации B2200A/B2201A	
Условия эксплуатации:	
рабочая температура, °С	от плюс 10 до плюс 40
относительная влажность, %	от 20 до 80 (без конденсации влаги)
Условия хранения:	
Условия хранения: температура хранения, °С	от минус 20 до плюс 60
Условия хранения: температура хранения, °С относительная влажность, %	от 5 до 90 (без конденсации влаги)

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносят на титульный лист руководства по эксплуатации типографским способом и на корпус измерителей методом трафаретной печати.

комплектность

Таблица 6 – Комплектность измерителей

Наименование	Количество
Комплектующие изделия, входящие в состав ста	ндартной поставки
Измеритель 4155С (4156С)	1 шт.
Комплект запасных частей и принадлежностей	1 шт.
Руководство по эксплуатации	1 экз.
Методика поверки	1 экз.
Комплектующие изделия, поставляемые	е по заказу
Блок расширения 41501В	1 шт.
Блок коммутации Е5250А	1 шт.
Блок коммутации В2200А	1 шт.
Блок коммутации В2201А	1 шт.

ПОВЕРКА

Поверку измерителей следует проводить в соответствии с документом МП-051/447-2008 «ГСИ. Измерители параметров полупроводниковых приборов 4155С, 4156С. Методика поверки», утвержденным ГЦИ СИ Φ ГУ «Ростест-Москва» в ноябре 2008 г.

Основное оборудование, используемое при поверке:

- мультиметр 3458А.

Межповерочный интервал – 1 год.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 22261-94 «Средства измерения электрических и магнитных величин. Общие технические условия».

Техническая документация фирмы «Agilent Technologies», США.

Приложение к свидетельству № _______ об утверждении типа средств измерений серийного производства

ЗАКЛЮЧЕНИЕ

Тип измерителей параметров полупроводниковых приборов 4155C, 4156C утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации.

ИЗГОТОВИТЕЛЬ

Фирма «Agilent Technologies Japan, Ltd.», Япония Hachioji Semiconductor Test Division 9-1, Takakura-cho, Hachioji-shi Tokyo, 192-8510 Japan

Генеральный директор ООО «Орион-Сити»

И. Ю. Швецова