ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система информационно-измерительная коммерческого учета электроэнергии автоматизированная Уральского алюминиевого завода - филиала ОАО «Сибирско-Уральская алюминиевая компания»

Внесена в Государственный реестр средств измерений Регистрационный 30216-05

Изготовлена по технической документации ООО «НП Φ «Телемеханик», заводской номер 01.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Система информационно-измерительная коммерческого учета электроэнергии автоматизированная Уральского алюминиевого завода - филиала ОАО «Сибирско-Уральская алюминиевая компания», г. Каменск-Уральский, (в дальнейшем АИИС) предназначена для измерения и коммерческого учета электрической энергии и усредненной электрической мощности, а также для автоматического сбора, обработки, хранения и отображения полученной информации.

Область применения: измерение, учет и контроль активной и реактивной электрической энергии и усредненной электрической мощности, получаемой Уральским алюминиевым заводом от Красногорской ТЭЦ и Восточных электрических сетей ОАО «Свердловэнерго», с целью обеспечения проведения финансовых расчетов Уральского алюминиевого завода — филиала ОАО «Сибирско-Уральская алюминиевая компания» на оптовом рынке электроэнергии.

ОПИСАНИЕ

Измерительные каналы (ИК) АИИС предназначены для измерения и коммерческого учета электроэнергии и усредненной электрической мощности. ИК АИИС построены на базе телемеханической системы учета «Пчела» и следующих средств измерений, внесенных в Государственный реестр средств измерений:

- измерительные трансформаторы тока по ГОСТ 7746;
- измерительные трансформаторы напряжения по ГОСТ 1983;
- счетчики электрической энергии типа СЭТ-4ТМ.03.

Каждый счетчик АИИС может входить в состав двух измерительных каналов, обеспечивающих измерение активной (A) и реактивной (P) электроэнергии и усредненной электрической мощности, передаваемой по конкретному вводу.

Перечень ИК АИИС с указанием номера точки учета, номера ИК, наименования ввода и непосредственно измеряемой величины, типов средств измерений, входящих в состав ИК, номера регистрации измерительных трансформаторов в Государственном реестре средств измерений представлен в таблице 1.

Таблица 1

т аол	ица 1				
No	No	Наименование ввода,	Тип	Типы	Номер
точки	ИК	прием активной (А)	счетчика	измеритель-	Гос-
учета		и реактивной (Р) энергии и мощности		ных транс-	реестра
	_			форматоров	
1	2	3	4	5	6
1	1	Красногорская ТЭЦ ПС-10, ф.3 А, 10 кВ	СЭТ-	ТПОФ-10	518
	2	Красногорская ТЭЦ ПС-10, ф.3 Р, 10 кВ	4TM.03	НТМИ-10	831
2	3	Красногорская ТЭЦ ПС-71, ф.1 А, 10 кВ	СЭТ-	ТПОФ-10	518
	4	Красногорская ТЭЦ ПС-71, ф.1 Р, 10 кВ	4TM.03	НТМИ-10	831
3	5	Красногорская ТЭЦ ПС-45, ф.2 А, 10 кВ	СЭТ-	ТПОФ-10	518
	6	Красногорская ТЭЦ ПС-45, ф.2 Р, 10 кВ	4TM.03	НТМИ-10	831
4	7	Красногорская ТЭЦ ПС-13, ф.2 А, 10 кВ	СЭТ-	ТПОФ-10	518
	8	Красногорская ТЭЦ ПС-13, ф.2 Р, 10 кВ	4TM.03	НТМИ-10	831
5	9	Красногорская ТЭЦ ПС-10, ф.2 А, 10 кВ	СЭТ-	ТПОФ-10	518
J	10	Красногорская ТЭЦ ПС-10, ф.2 Р, 10 кВ	4TM.03	НТМИ-10	831
6	11	Красногорская ТЭЦ ПС-1, ф.3 А, 10 кВ	CЭT-	ТПОФ-10	518
O	12	Красногорская ТЭЦ ПС-1, ф.3 Р, 10 кВ	4TM.03	HТМИ-10	831
7	13	Красногорская ТЭЦ КПП-75, ф.1, А, 10 кВ	CЭT-	ТПОЛ-10	1261
/	14	Красногорская ТЭЦ КПП-75, ф.1, Р, 10 кВ	4TM.03	HТМИ-10	831
8	15	Красногорская ТЭЦ КПП-1, ф.8, А, 10 кВ	CЭT-	ТПОФ-10	518
o	16	Красногорская ТЭЦ КПП-1, ф.8, Р, 10 кВ	4TM.03	НТМИ-10	831
9	17		CЭT-	ТПОЛ-10	
9	i	Красногорская ТЭЦ КПП-850, ф.6, А, 10 кВ		1	1261
1.0	18	Красногорская ТЭЦ КПП-850, ф.6, Р, 10 кВ	4TM.03	HТМИ-10	831
10	19	Красногорская ТЭЦ ПП-850, ф.4, А, 10 кВ	CЭT-	ТПОЛ-10	1261
1 1	20	Красногорская ТЭЦ КПП-850, ф.4, Р, 10 кВ	4TM.03	НТМИ-10	831
11	21	Красногорская ТЭЦ ПС-71, ф.2, А, 10 кВ	CЭT-	ТПОФ-10	518
10	22	Красногорская ТЭЦ ПС-71, ф.2, Р, 10 кВ	4TM.03	HOM-10	363
12	23	Красногорская ТЭЦ КПП-2, ф.8, А, 10 кВ	СЭТ-	ТПОФ-10	518
1.2	24	Красногорская ТЭЦ КПП-2, ф.8, Р, 10 кВ	4TM.03	HOM-10	363
13	25	Красногорская ТЭЦ КПП-2, ф.7, А, 10 кВ	CЭT-	ТПОФ-10	518
1.4	26	Красногорская ТЭЦ КПП-2, ф.7, Р, 10 кВ	4TM.03	HOM-10	363
14	27	Красногорская ТЭЦ КПП-2, ф.6, А, 10 кВ	СЭТ-	ТПОФ-10	518
	28	Красногорская ТЭЦ КПП-2, ф.6, Р, 10 кВ	4TM.03	HOM-10	363
15	29	Красногорская ТЭЦ КПП-2, ф.9, А, 10 кВ	СЭТ-	ТПОФ-10	518
	30	Красногорская ТЭЦ КПП-2, ф.9, Р, 10 кВ	4TM.03	HOM-10	363
16	31	Красногорская ТЭЦ КПП-2, ф.4, А, 10 кВ	СЭТ-	ТПОФ-10	518
	32_	Красногорская ТЭЦ КПП-2, ф.4, Р, 10 кВ	4TM.03	HOM-10	363
17	33	Красногорская ТЭЦ КПП-2, ф.3, А, 10 кВ	СЭТ-	ТПОФ-10	518
	34_	Красногорская ТЭЦ КПП-2, ф.3, Р, 10 кВ	4TM.03	HOM-10	363
18	35	Красногорская ТЭЦ КПП-2, ф.2, А, 10 кВ	СЭТ-	ТПОФ-10	518
	36	Красногорская ТЭЦ КПП-2, ф.2, Р, 10 кВ	4TM.03	HOM-10	363
19	37	Красногорская ТЭЦ КПП-2, ф.1, А, 10 кВ	СЭТ-	ТПОФ-10	518
	38	Красногорская ТЭЦ КПП-2, ф.1, Р, 10 кВ	4TM.03	HOM-10	363
20	39	Красногорская ТЭЦ ПС-10, ф.1, А, 10 кВ	СЭТ-	ТПОФ-10	518
	40_	Красногорская ТЭЦ ПС-10, ф.1, Р, 10 кВ	4TM.03	HOM-10	363
21	41	Красногорская ТЭЦ КПП-1, ф.16, А, 10 кВ	СЭТ-	ТПОФ-10	518
	42	Красногорская ТЭЦ КПП-1, ф.16, Р, 10 кВ	4TM.03	HOM-10	363
22	43	Красногорская ТЭЦ КПП-1, ф.15, А, 10 кВ	СЭТ-	ТПОФ-10	518
	44	Красногорская ТЭЦ КПП-1, ф.15, Р, 10 кВ	4TM.03	HOM-10	363
23	45	Красногорская ТЭЦ КПП-1, ф.14, А, 10 кВ	СЭТ-	ТПОФ-10	518
	46	Красногорская ТЭЦ КПП-1, ф.14, Р, 10 кВ	4TM.03	HOM-10	363
24	47	Красногорская ТЭЦ КПП-1, ф.13, А, 10 кВ	СЭТ-	ТПОФ-10	518
	48	Красногорская ТЭЦ КПП-1, ф.13, Р, 10 кВ	4TM.03	HOM-10	363

Продолжение таблицы 1

Прод	цолжег	ние таблицы 1		p	
1	2	3	4	5	6
25	49	Красногорская ТЭЦ КПП-1, ф.12, А, 10 кВ	СЭТ-	ТПОФ-10	518
	50	Красногорская ТЭЦ КПП-1, ф.12, Р, 10 кВ	4TM.03	HOM-10	363
26	51	Красногорская ТЭЦ КПП-1, ф.11, А, 10 кВ	СЭТ-	ТПОФ-10	518
	52	Красногорская ТЭЦ КПП-1, ф.11, Р, 10 кВ	4TM.03	HOM-10	363
27	53	Красногорская ТЭЦ ПС-13, ф.1, А, 10 кВ	СЭТ-	ТПОФ-10	518
	54	Красногорская ТЭЦ ПС-13, ф.1, Р, 10 кВ	4TM.03	HOM-10	363
28	55	Красногорская ТЭЦ ПС-20, ф.2, А, 10 кВ	СЭТ-	ТПОФ-10	518
20	56	Красногорская ТЭЦ ПС-20, ф.2, Р, 10 кВ	4TM.03	HOM-10	363
29	57	Красногорская ТЭЦ ПС-1, ф.1, А, 10 кВ	СЭТ-	ТПОФ-10	518
2)	58	Красногорская ТЭЦ ПС-1, ф.1, Р, 10 кВ	4TM.03	HOM-10	363
30	59	Красногорская ТЭЦ ПС-20, ф.1, А, 10 кВ	СЭТ-	ТПОФ-10	518
50	60	Красногорская ТЭЦ ПС-20, ф.1, Р, 10 кВ	4TM.03	HТМИ-10	831
31	61	Красногорская ТЭЦ ПС-1, ф.4, А, 10 кВ	CЭT-	ТПОФ-10	518
<i>J</i> 1	62	Красногорская ТЭЦ ПС-1, ф.4, Р, 10 кВ	4TM.03	HТМИ-10	831
32	63	Красногорская ТЭЦ ПС-45, ф.1, А, 10 кВ	СЭТ-	ТПОФ-10	518
32	64	Красногорская ТЭЦ ПС-45, ф.1, Р, 10 кВ	4TM.03	НТМИ-10	831
33	65	Красногорская ТЭЦ КПП-1, ф.9, А, 10 кВ	CЭT-	ТПОФ-10	518
23	66	Красногорская ТЭЦ КПП-1, ф.9, Р, 10 кВ	4TM.03	HТМИ-10	831
34	67	Красногорская ТЭЦ ПС-1, ф.2, А, 10 кВ	CЭT-	ТПОФ-10	518
34	68	Красногорская ТЭЦ ПС-1, ф.2, А, 10 кВ	4TM.03	HТМИ-10	831
35	69	Красногорская ТЭЦ КПП-2, ф.10, А, 10 кВ	CЭT-	ТПОФ-10	518
. 33	70	Красногорская ТЭЦ КПП-2, ф.10, А, 10 кВ	4TM.03	НТМИ-10	831
36	71	Красногорская ТЭЦ КПП-1, ф.17, А, 10 кВ	CЭT-	ТПОФ-10	518
30	72	Красногорская ТЭЦ КПП-1, ф.17, А, 10 кВ	4TM.03	НТМИ-10	831
37	73	Красногорская ТЭЦ КПП-75, ф.2, А, 10 кВ	CЭT-	ТПОЛ-10	1261
3 /	74	Красногорская ТЭЦ КПП-75, ф.2, А, 10 кВ	4TM.03	HTMИ-10	831
38	75	ПС «Электролизная», Ш1, A, 10 кВ	CЭT-	ТЛШ-10	6811
50	76	ПС «Электролизная», Ш1, Р, 10 кВ	4TM.03	3НОЛ.06	3344
39	77	ПС «Электролизная», Ш1, 1, 10 кВ	CЭT-	ТЛШ-10	6811
39	78	ПС «Электролизная», Ш2, А, 10 кВ	4TM.03	3НОЛ.06	3344
40	79	ПС «Электролизная», Ш2, г, 10 кВ	CЭT-	ТЛШ-10	
40	80		4TM.03		6811
41	81	ПС «Электролизная», ШЗ, Р, 10 кВ		ЗНОЛ.06	3344
41	82	ПС «Электролизная», Ш4, A, 10 кВ	CЭT-	ТЛШ-10	6811
42	83	ПС «Электролизная», Ш4, Р, 10 кВ	4TM.03	ЗНОЛ.06	3344
42	84	ПС «УАЗ», ввод №1, А, 10 кВ	CЭT-	ТПШФ-10	519
43		ПС «УАЗ», ввод №1, Р, 10 кВ	4TM.03	HOM-10	363
43	85	ПС «УАЗ», ввод №2, А, 10 кВ	CЭT-	ТПШФ-10	519
44	86	ПС «УАЗ», ввод №2, Р, 10 кВ	4TM.03	HOM-10	363
44		ПС «Оборотная», ввод №1, А, 10 кВ	CЭT-	ТПШЛ-10	1423
15	88	ПС «Оборотная», ввод №1, Р, 10 кВ	4TM.03	НТМИ-10	831
45	89	ПС «Оборотная», ввод №2, А, 10 кВ	CЭT-	ТПШЛ-10	1423
16	90	ПС «Оборотная», ввод №2, Р, 10 кВ	4TM.03	НТМИ-10	831
46	91	ПС «Оборотная», ввод №3, А, 10 кВ	CЭT-	ТПШЛ-10	1423
	92	ПС «Оборотная», ввод №3, Р, 10 кВ	4TM.03	НТМИ-10	831
47	93	ПС «Оборотная», ввод №4, А, 10 кВ	СЭТ-	ТПШЛ-10	1423
4.0	94	ПС «Оборотная», ввод №4, Р, 10 кВ	4TM.03	НТМИ-10	831
48	95	Красногорская ТЭЦ, ПС-80, ф.1, А, 10 кВ	СЭТ-	ТЛШ-10	6811
40	96	Красногорская ТЭЦ, ПС-80, ф.1, Р, 10 кВ	4TM.03	НТМИ-10	831
49	97	Красногорская ТЭЦ, ПС-80, ф.2, А, 10 кВ	CЭT-	ТЛШ-10	6811
	98	Красногорская ТЭЦ, ПС-80, ф.2, Р, 10 кВ	4TM.03	НТМИ-10	831

Продолжение таблицы 1

1	2	3	4	5	6
50	99	ПС «Каменская», Черноскутово 1, A, 10 кВ	СЭТ-	ТПЛ-10	1276
	100	ПС «Каменская», Черноскутово 1, Р, 10 кВ	4TM.03	НТМИ-10	831
51	101	ПС «Каменская», Черноскутово 2, А, 10 кВ	СЭТ-	ТПЛ-10	1276
	102	ПС «Каменская», Черноскутово 2, Р, 10 кВ	4TM.03	НТМИ-10	831

Нижний уровень АИИС включает в себя измерительные трансформаторы тока и напряжения, типы которых указаны в таблице 1, и счетчики электрической энергии СЭТ-4ТМ.03 (зарегистрированы в Государственном реестре средств измерений под № 27524).

Измерительные трансформаторы тока и напряжения, входящие в состав ИК АИИС, осуществляют приведение измеряемых токов и напряжений к уровням, соответствующим входным токам и напряжениям счетчиков системы.

Счетчики электрической энергии, входящие в состав ИК АИИС, выполняют автоматическое измерение и преобразование в цифровой код активной и реактивной электрической энергии и мощности в каждой точке учета, интегрирование результатов измерений на получасовых интервалах, сохранение полученных значений в памяти счетчика с привязкой к текущему времени (профили нагрузки).

Верхний уровень АИИС построен на базе телемеханической системы учета «Пчела», зарегистрированной в Государственном реестре СИ под № 18332, и включает в себя:

- промышленный компьютер стандартной комплектации, оснащенный операционной системой типа Windows и прикладным программным обеспечением (ПО) «Энергоучет». Компьютер исполняет функции сервера АИИС и автоматизированного рабочего места (АРМ), обеспечивающего отображение и представление в заданной форме информации, накопленной в базе данных сервера АИИС;
- каналообразующую аппаратуру, обеспечивающую передачу измерительной информации от счетчиков электрической энергии к серверу АИИС;
 - приемник сигналов точного времени «Пчела-ТВ»;
- переносный компьютер с программным обеспечением «Конфигуратор СЭТ-4ТМ» для работы со счетчиками электрической энергии АИИС.

Сервер АИИС выполняет следующие функции:

- прием информации об электропотреблении от счетчиков в штатном режиме работы АИИС;
 - хранение принятой информации и предоставление ее пользователям;
- поддержание единого системного времени, корректировка системного времени по сигналам приемника сигналов точного времени «Пчела-ТВ»;
- формирование файлов экспорта данных и их передачу в ОАО «Свердловэнерго» и НП «АТС».

АИИС обеспечивает измерение следующих основных параметров электропотребления: потребление активной и реактивной энергии за заданные временные интервалы, кратные получасу, по отдельным счетчикам, заданным группам счетчиков и предприятию в целом с учетом многотарифности, средние (получасовые) значения активной и реактивной мощности (нагрузки), средний (получасовой) максимум активной мощности (нагрузки) в часы утреннего и вечернего максимумов нагрузки по отдельным счетчикам, заданным группам, предприятию в целом.

Для защиты метрологических характеристик системы от несанкционированных изменений (корректировок) предусмотрен многоступенчатый доступ к текущим данным и параметрам настройки системы (электронные ключи, индивидуальные пароли и программные средства для защиты файлов и базы данных).

Номинальные функции преобразования

Вычисление средней получасовой мощности на і-м получасовом интервале производится на основании показаний профиля нагрузки счетчика в соответствии с соотношением:

$$Pi = K_T * K_H * Ni, кВт(квар),$$

где: Ni — средняя получасовая мощность на i-м получасовом интервале, хранящаяся в соответствующем массиве профиля мощности счетчика;

 K_{T} и K_{H} — номинальные значения коэффициентов трансформации измерительных трансформаторов тока и напряжения, включенных на входе счетчика ИК.

Вычисление получасового приращения измеряемой энергии ΔEi на i-м получасовом интервале производится на основании показаний профиля нагрузки счетчика в соответствии с соотношением:

$$\Delta Ei = 0.5 * K_T * K_H * Ni, кВт-ч (квар-ч),$$

Вычисление приращения измеряемой энергии ΔE_{τ} за заданный интервал времени τ , кратный получасовому интервалу, производится в соответствии с соотношением:

$$\Delta E_{\tau} = K_{T} * K_{H} * \sum (\Delta E_{i}), \kappa B_{T} \cdot \Psi (\kappa B_{i} + \Psi_{i}),$$

где: $\sum (\Delta Ei)$ — сумма получасовых приращений энергии за время t, полученных из профиля нагрузки счетчика.

Вычисление средней мощности P_{τ} на заданном интервале времени τ (ч), кратном получасовому интервалу, производится в соответствии с соотношением:

$$P_{\tau} = \Delta E_{\tau} / \tau$$
, кВт (квар).

Метрологические характеристики АИИС представлены в таблице 2.

Таблица 2

Наименование характеристики	Значение
	характерис
	тики
1	2
Общее количество измерительных каналов АИИС для измерения:	
- активной электрической энергии и мощности	51
- реактивной электрической энергии и мощности	51
Класс точности счетчика ИК:	
- для измерения активной электрической энергии	0,2S
- для измерения реактивной электрической энергии	0,5
Класс точности измерительного трансформатора напряжения, определяющий в соответствии с ГОСТ 1983 значения пределов допускаемой относительной погрешности напряжения δ_U и угловой погрешности θ_U трансформатора	0,5
Класс точности измерительного трансформатора тока ИК, определяющий в соответствии с ГОСТ 7746 значения пределов допускаемой относительной токовой погрешности δ_I и угловой погрешности θ_I трансформатора	0,5

Продолжение таблицы 2

1	2
Предел допускаемой относительной погрешности передачи и обработки данных, %	± 0,05
Предел допускаемой относительной погрешности вычисления приращения энергии, %	± 0,05
Предел допускаемой относительной погрешности вычисления средней мощности, %	± 0,05
Предел допускаемой относительной погрешности накопления информации по группам, %	± 0,05
Предел относительной погрешности*) измерительного канала при измерениях активной и реактивной электрической энергии и мощности, %, соответствующий доверительной вероятности 95%:	
- активной энергии и мощности	± 0,9
- реактивной энергии и мощности	± 1,1
Предел допускаемого значения абсолютной погрешности отсчета текущего времени, с	± 5
Интервал задания границ тарифных зон, мин	30

^{*)} Представленное значение получено расчетным путем на основании значений составляющих погрешности ИК в предположениях: условия эксплуатации - нормальные, измеряемые напряжения и токи равны номинальным, фазовый угол между измеряемыми током и напряжением равен 0 или $\pi/2$ при измерении активной или реактивной энергии соответственно. В случае отклонения условий измерений от нормальных, предел относительной погрешности измерения для каждого ИК может быть рассчитан согласно соотношениям, приведенным в методике поверки МП 38-263-2005.

Условия эксплуатации АИИС:

- напряжение электропитания стандартная сеть переменного тока частотой 50 Γ ц и напряжением 220 B;
- мощность, потребляемая отдельным компонентом АИИС, не более 50 Вт;
- температура окружающей среды для ПЭВМ АИИС от 12 до 40 °C.
- температура окружающей среды для счетчиков от минус 40 до 60° С.

Показатели надежности:

Для счетчика типа «СЭТ-4ТМ.03:

- средняя наработка на отказ 90 000 ч:
- cpoк службы 30 лет.

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится типографским способом на титульных листах формуляра и руководства пользователя.

КОМПЛЕКТНОСТЬ АИИС

Комплектность АИИС представлена в таблице 3.

Таблица 3

Наименование средства	Количество
Измерительные трансформаторы тока по ГОСТ 7746 (типы и	
класс точности указаны в таблице 1), шт.	108
Измерительные трансформаторы напряжения по ГОСТ 1983 (типы	
и класс точности указаны в таблице 1), шт.	13
Счетчики активной и реактивной энергии переменного тока,	
статические многофункциональные СЭТ.4ТМ.03, шт.	51
Шкаф компьютерный, содержащий:	1
- промышленный компьютер 4U/19"/7xPCI/Intel P4 2,8G/512Mb	
DDR/LAN/2x80Gb IDE RAID/CD-ROM/FDD/2x300W ATX,	
оснащенный операционной системой Windows и прикладным	
программным обеспечением «Энергоучет», компл.	1
- источник бесперебойного питания Smart-UPS, шт.	1
- устройство преобразования сигналов «Пчела УПС-1М.1», шт.	1
- приемник сигналов точного времени «Пчела-ТВ», шт	1
- GSM-модем Sony Ericsson GM 29, шт	2
- автомат резервирования питания АВР-4, шт.	1
Шкаф защиты оборудования, включающий:	6
- устройство преобразования сигналов «ПчелаУПС-1С», шт.	7
- устройство преобразования сигналов «Пчела УПС-1М.4», шт.	5
- устройство защиты линии связи УЗЛС-1, шт.	5
- автомат резервирования питания АВР-4, шт.	5
- автоматический выключатель, шт.	2
Эксплуатационная документация, компл.	1
Методика поверки МП 38-263-2005, экз.	1

ПОВЕРКА

Поверка АИИС проводится по методике МП 38-263-2005 "ГСИ. Система информационноизмерительная коммерческого учета электроэнергии автоматизированная Уральского алюминиевого завода — филиала ОАО «Сибирско-Уральская алюминиевая компания» (АИИС УАЗ). Методика поверки измерительных каналов», утвержденной ФГУП УНИИМ в августе 2005 г.

Перечень основных средств поверки:

- средства поверки измерительных трансформаторов напряжения по ГОСТ 8.216;
- средства поверки измерительных трансформаторов тока по ГОСТ 8.217;
- средства поверки счетчиков электрической энергии в соответствии с документом «Счетчик электрической энергии многофункциональный СЭТ-4ТМ.03. Руководство по эксплуатации. Методика поверки ИЛГШ.411152.124 РЭ1»;
- переносный компьютер типа "NoteBook" с ПО «Конфигуратор СЭТ4.ТМ», оптическая считывающая головка;
- радиоприемник УКВ-диапазона для приема сигналов точного времени;
- секундомер СОСпр2б-2-010 ТУ25-1894.003-90.

Межповерочный интервал - 4 года.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».

ГОСТ 26035-83 «Счетчики электрической энергии переменного тока электронные. Общие технические условия».

ГОСТ 30206-94 «Статические счетчики ватт-часов активной энергии переменного тока (класс точности 0,2S и 0,5S)».

ГОСТ 1983-01 «Трансформаторы напряжения. Общие технические условия».

ГОСТ 7746-01 «Трансформаторы тока. Общие технические условия».

Автоматизированная информационно-измерительная система коммерческого учета электроэнергии. Уральский алюминиевый завод — филиал ОАО «Сибирско-Уральская алюминиевая компания» (АИИС УАЗ). Техническое задание 824.01.1-ЭТ.ТЗ.

ЗАКЛЮЧЕНИЕ

Тип системы информационно-измерительной коммерческого учета электроэнергии автоматизированной Уральского алюминиевого завода — филиала ОАО «Сибирско-Уральская алюминиевая компания» утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, и метрологически обеспечен в эксплуатации.

Изготовитель:

ООО «НПФ «Телемеханик»

Адрес: 620146, г. Екатеринбург, ул. Шаумяна, 83, оф.403

Телефон/факс: (343)- 243-35-98

Директор ООО «НПФ Телемеханик» — Е.П.Желобов — Е.П.Желобов — Карино производственням — В.П.Желобов — Карино производственням — В.П.Желобов — В.П.Келобов —