СОГЛАСОВАНО

Руководитель ГЦИ СИ ФГУ «Нижегородский ЦСМ»

_ Решетник И.И.

2005 г.

Система автоматизированная информационно - измерительная «ВМЗ»

Внесена в Государственный реестр средств измерений Регистрационный № 30210-05 Взамен №

Изготовлена по технической документации ООО «Экситон», г. Н. Новгород, и ООО «Эльстер Метроника», г. Москва. Заводской номер 001.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Система автоматизированная информационно - измерительная «ВМЗ» (в дальнейшем система), предназначена для измерения и учета электрической энергии и мощности, а также автоматического сбора, накопления, обработки, хранения и отображения полученной информации.

Область применения — технический и коммерческий учёт электрической энергии и мощности на ОАО «Выксунский металлургический завод», г. Выкса, Нижегородской области.

ОПИСАНИЕ

Система автоматизированная информационно - измерительная «ВМЗ» представляет собой многоуровневую информационно-измерительную систему, построенную на базе комплекса аппаратно-программных средств для учёта электроэнергии на основе УСПД серии RTU-300 (Госреестр № 19495-03) и подключенных к его измерительным каналам трансформаторов тока и напряжения.

Состав измерительного канала системы:

- трансформаторы тока ТБМО-110 УХЛ1 (Госреестр № 23256-02) или ТПЛ-10-М (Госреестр № 22192-01) или ТОП-0,66 (Госреестр № 15174-01) или ТОЛ-10-1 (Госреестр № 15128-01);
- трансформатор напряжения НАМИ-110 (Госреестр № 21990-01) или ЗНОЛ.06 (Госреестр № 3344-04) или прямое подключение счетчика к цепям напряжения;
- счетчик электроэнергии многофункциональный ЕвроАЛЬФА, мод. ЕА02 (Госреестр № 16666-97);
- контроллер ICP CON 7188, модем Zyxel U-336S, модемный блок Zyxel RS 1612 с установленными модемами U-336R (основной канал передачи данных);
- контроллер ICP CON 7188, преобразователь интерфейса MOXA Nport DE-311 или сотовые терминалы Siemens TC-35 (резервный канал передачи данных);
- устройство сбора и передачи данных УСПД RTU-325 (Госреестр № 19495-03) (основное и резервное);
- сервер базы данных HP Proliant ML350 (основной и резервный);
- автоматизированные рабочие места APM.

Система работает под управлением сервера базы данных НР Proliant ML350 c установленным комплексом программного обеспечения $(\Pi\Omega)$ «АльфаЦЕНТР», обеспечивающим визуализацию измеренных счетчиками электроэнергии параметров, состояний компонентов системы, ведение протоколов И архивирования конфигурирование и настройку программной части системы, а также считывание и вывод твердых копий отчетов с коммерческой информацией по расходу электроэнергии. Устройство сбора и передачи данных УСПД RTU-325 обеспечивает опрос счетчиков по заданному алгоритму, хранение и передачу полученной информации на сервер, откуда по локальной

компьютерной сети (с использованием протокола TCP/IP) информация передается на автоматизированные рабочие места (APM). В системе имеется резервный сервер базы данных и резервное УСПД RTU-325.

В качестве стандартного программного обеспечения рабочей станции используются операционная система WINDOWS.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Количество измерительных каналов системы (по точкам учета):

42

Пределы допускаемой относительной погрешности измерения:

- активной электрической энергии и мощности измерительным каналом системы, включающим трансформаторы тока (класс точности 0,2S), трансформаторы напряжения (класс точности 0,2), счетчик электрической энергии (класс точности по активной энергии 0,2S):

```
при 0.2 < I/Iном \le 1.2 и 0.8 < \cos \varphi \le 1 \pm 0.8 %; при 0.2 < I/Iном \le 1.2 и 0.5 < \cos \varphi \le 0.8 \pm 1.1 %; при 0.05 < I/Iном \le 0.2 и 0.8 < \cos \varphi \le 1 \pm 1.0 %; при 0.05 < I/Iном \le 0.2 и 0.5 < \cos \varphi \le 0.8 \pm 1.4 %; при 0.01 < I/Iном \le 0.05 и 0.8 < \cos \varphi \le 1 \pm 1.4 %; при 0.01 < I/Iном \le 0.05 и 0.5 < \cos \varphi \le 0.8 \pm 1.4 %; при 0.01 < I/Iном \le 0.05 и 0.5 < \cos \varphi \le 0.8 \pm 2.1 %;
```

- реактивной электрической энергии и мощности измерительным каналом системы, включающим трансформаторы тока (класс точности 0,2S), трансформаторы напряжения (класс точности 0,2), счетчик электрической энергии (класс точности по реактивной энергии 0,2):

- активной электрической энергии и мощности измерительным каналом системы, включающим трансформаторы тока (класс точности 0.2S), счетчик электрической энергии (класс точности по активной энергии 0.2S):

```
при 0.2 < I/Iном \le 1.2 и 0.8 < \cos \varphi \le 1 \pm 0.7 %; при 0.2 < I/Iном \le 1.2 и 0.5 < \cos \varphi \le 0.8 \pm 0.9 %; при 0.05 < I/Iном \le 0.2 и 0.8 < \cos \varphi \le 1 \pm 0.9 %; при 0.05 < I/Iном \le 0.2 и 0.5 < \cos \varphi \le 0.8 \pm 1.2 %; при 0.01 < I/Iном \le 0.05 и 0.8 < \cos \varphi \le 1 \pm 1.3 %; при 0.01 < I/Iном \le 0.05 и 0.5 < \cos \varphi \le 0.8 \pm 1.2 %; при 0.01 < I/Iном \le 0.05 и 0.5 < \cos \varphi \le 0.8 \pm 2.0 %;
```

- реактивной электрической энергии и мощности измерительным каналом системы, включающим трансформаторы тока (класс точности 0,2S), счетчик электрической энергии (класс точности по реактивной энергии 0,2):

```
при 0.2 < I/Iном \le 1.2 и 0.8 < \sin \varphi \le 1 \pm 0.7 %; при 0.2 < I/Iном \le 1.2 и 0.5 < \sin \varphi \le 0.8 \pm 0.9 %; при 0.05 < I/Iном \le 0.2 и 0.8 < \sin \varphi \le 1 \pm 0.9 %; при 0.05 < I/Iном \le 0.2 и 0.5 < \sin \varphi \le 0.8 \pm 1.2 %; при 0.01 < I/Iном \le 0.05 и 0.8 < \sin \varphi \le 1 \pm 1.6 %; при 0.01 < I/Iном \le 0.05 и 0.5 < \sin \varphi \le 0.8 \pm 2.5 %.
```

(где І/Іном - отношение измеряемого значения тока к его номинальному значению, $\cos \varphi$ - коэффициент мощности, $\sin \varphi = \sqrt{1-\cos^2 \varphi}$)

Пределы допускаемой абсолютной погрешности измерения времени УСПД $\pm\,5$ секунд в сутки.

Пределы допускаемой относительной погрешности передачи и обработки данных в измерительных каналах системы $\pm\,0,01\,\%$.

Условия эксплуатации компонентов системы:

- температура окружающего воздуха от 10 до 40 °C;
- относительная влажность воздуха от 30 до 80 %;
- атмосферное давление от 84 до 106,7 кПа.

- автоматизированного рабочего места

Питание автоматизированных рабочих мест, серверов базы данных, устройств сбора и передачи данных УСПД RTU-325, контроллеров ICP CON 7188, модемов Zyxel U-336S, модемного блока Zyxel RS 1612 с установленными модемами U-336R, преобразователей интерфейса MOXA Nport DE-311, сотовых терминалов Siemens TC-35 осуществляется от сети переменного тока напряжением $220^{+10\%}_{-15\%}$ B, частотой (50 \pm 1) Γ ц.

Мощность, потребляемая компонентами системы, при номинальном напряжении питания от сети переменного тока, не более:

- контроллера ICP CON 7188	2 BA;
- модема Zyxel U-336S	15 BA;
- модемного блока Zyxel RS 1612	150 BA;
- преобразователя интерфейса MOXA Nport DE-311	3 BA;
- сотового терминала Siemens TC-35	2 BA;
- устройства сбора и передачи данных УСПД RTU-325	50 BA;
- сервера базы данных HP Proliant ML350	500 BA;
- автоматизированного рабочего места	500 BA.
Средняя наработка на отказ системы не менее 40000 часов.	
Среднее время восстановления не более 24 часов.	
Средний срок службы системы не менее 10 лет.	
Габаритные размеры компонентов системы, не более:	
- счетчика электроэнергии многофункционального ЕвроАЛЬФА	300х170х80 мм;
- контроллера ICP CON 7188	120х70х34 мм;
- модема Zyxel U-336S	263х210х50 мм;
- модемного блока Zyxel RS 1612	482х180х300 мм;
- преобразователя интерфейса MOXA Nport DE-311	90х100х22 мм;
- сотового терминала Siemens TC-35	73х68х33 мм;
- устройства сбора и передачи данных УСПД RTU-325	260х230х330 мм;
- сервера базы данных HP Proliant ML350	540х550х210 мм;
- автоматизированного рабочего места	800х600х600 мм.
Масса компонентов системы, не более:	
- счетчика электроэнергии многофункционального ЕвроАЛЬФА	2 кг.;
- контроллера ICP CON 7188	0,15 кг.;
- модема Zyxel U-336S	1 кг.;
- модемного блока Zyxel RS 1612	7 кг.;
- преобразователя интерфейса MOXA Nport DE-311	0,2 кг.;
- сотового терминала Siemens TC-35	0,15 кг.;
- устройства сбора и передачи данных УСПД RTU-325	10 кг.;
- сервера базы данных HP Proliant ML350	20 кг.;

ЗНАК УТВЕРЖДЕНИЯ ТИПА

30 кг.

Знак утверждения типа наносится на титульные листы эксплуатационной документации в правом верхнем углу.

4 КОМПЛЕКТНОСТЬ

T 1 TEMO 110 VIVII	27
Трансформатор тока ТБМО-110 УХЛ1	27 шт.;
Трансформатор тока ТПЛ-10-М	58 шт.;
Трансформатор тока ТОП-0,66	12 шт.;
Трансформатор тока ТОЛ-10-1	4 шт.;
Трансформатор напряжения НАМИ-110	9 шт.;
Трансформатор напряжения ЗНОЛ.06	29 шт.;
Счетчик электроэнергии многофункциональный ЕвроАЛЬФА, мод. ЕА02	42 шт.;
Контроллер ICP CON 7188	14 шт.;
Преобразователь интерфейса MOXA Nport DE-311	11 шт.;
Модем Zyxel U-336S	14 шт.;
Модемный блок Zyxel RS 1612 с установленными модемами U-336R	1 шт.;
Сотовый терминал Siemens TC-35	5 шт.;
Устройство сбора и передачи данных УСПД RTU-325	2 шт.;
Сервер базы данных HP Proliant ML350	2 шт.;
Автоматизированное рабочее место - АРМ	5 шт.;
Руководство по эксплуатации АУВБ.411711.В01.РЭ	1 экз.;
Руководство пользователя АУВБ.411711.В01.И3	1 экз.;
Инструкция по формированию и ведению базы данных АУВБ.411711.В01.И4	1 экз.;
Методика поверки	1 экз.

ПОВЕРКА

Поверка системы проводится в соответствии с документом «Система автоматизированная информационно - измерительная «ВМЗ». Методика поверки», утвержденным руководителем ГЦИ СИ Φ ГУ «Нижегородский ЦСМ» в октябре 2005 г.

Перечень основного оборудования, необходимого для поверки:

Секундомер СДСпр-1 ТУ 25-1810.0021-90.

Компьютер типа IBM с установленным ПО «АльфаЦЕНТР».

Межповерочный интервал - 4 года.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ Р 8.596 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

МИ 2441 ГСИ. Испытания для целей утверждения типа измерительных систем. Общие требования.

Техническая документации ООО «Экситон», г.Н.Новгород и ООО «Эльстер Метроника», г. Москва.

ЗАКЛЮЧЕНИЕ

Тип «Система автоматизированная информационно - измерительная «ВМЗ» утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации.

Изготовитель:

ООО «Экситон», г.Н.Новгород

Адрес: 603155, г. Нижний Новгород, ул.Козицкого,

Тел. (8312) 19-85-15

Директор ООО «Экситон»

А.И.Караулов