«СОГЛАСОВАНО»

Зам. директора ФГУП ВНИИОФИ

– руководитель ГЦИ СИ

Н. П. Муравская

2005 г.

Рабочий эталон единицы средней мощности в волоконно-оптических системах передачи РЭСМ-2-3 Внесен в Государственный реестр средств измерений Регистрационный № 2944-05 Взамен №

Изготовлен по технической документации ФГУП ВНИИОФИ, г. Москва, зав. № 0504/13

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Рабочий эталон единицы средней мощности в волоконно – оптических системах передачи (ВОСП) РЭСМ-2-3 предназначен для передачи размера единицы средней мощности и поверки рабочих средств измерений средней мощности в ВОСП на фиксированных длинах волн излучения - длинах волн калибровки в соответствии с поверочной схемой МИ 2558-99.

Область применения: поверка ваттметров средней мощности, источников оптического излучения, оптических аттенюаторов для ВОСП на длинах волн калибровки, а так же измерение характеристик (мощность, затухание) различных волоконно – оптических устройств.

ОПИСАНИЕ

Принцип работы РЭСМ-2-3 при поверке средств измерений средней мощности основан на сличении поверяемого прибора с измерителем оптической мощности из состава РЭСМ-2-3 на рабочих длинах волн источника РЭСМ-2-3 во всём динамическом диапазоне поверяемого прибора (или измерителя оптической мощности из состава РЭСМ-2-3). Регулировка оптической мощности производится оптическим аттенюатором.

РЭСМ-2-3 состоит из следующих основных устройств:

- тестера оптического ОТ-2-3;
- преобразователя измерительного $\Pi P 2$;
- аттенюатора оптического FOD 5418.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

1. Диапазон измеряемых значений средней мощности, Вт	
на длинах волн:	
• 850 нм	$\begin{vmatrix} 10^{-10} \dots 2 \times 10^{-3} \\ 10^{-11} \dots 2 \times 10^{-3} \end{vmatrix}$
• 1310 и 1550 нм	$10^{-11}2\times10^{-3}$
2. Диапазоны длин волн измеряемого излучения, нм	850 ± 70
	1310 ± 70
	1550 ± 70
3. Длины волн калибровки образцового ваттметра (длины волн	
источника), фиксированные в диапазонах, нм	850±10
	1310±10
	1550±10
4. Нестабильность мощности источников излучения за 15 мин.,	
%, не более	0,1
5. Мощность на выходе источников излучения, мВт, не менее	2

6. Предел допускаемого значения основной относительной по-	
грешности измерения средней мощности оптического излу-	
чения, %:	
• на длине волны калибровки (850 ± 10) нм в диапазоне	4
$10^{-9}2 \times 10^{-3}$ BT	
• на длине волны калибровки (850 ± 10) нм в диапазоне	5
$10^{-10}10^{-9}$ BT	
• на длинах волн калибровки (1310 \pm 10 и 1550 \pm 10) нм в	3
диапазоне 10 ⁻¹⁰ 2×10 ⁻³ Вт	
• на длинах волн калибровки (1310 \pm 10 и 1550 \pm 10) нм в	4
диапазоне 10 ⁻¹¹ 10 ⁻¹⁰ Вт	
• в рабочем спектральном диапазоне	6
• измерения относительных уровней мощности на длинах	1,2
волн (850 \pm 70)в диапазоне $10^{-9}2 \times 10^{-3}$ Вт и (1310 \pm 70	
и 1550 ± 70) нм в диапазоне $10^{-10}2 \times 10^{-3}$ Вт	
7. Основные технические характеристики преобразователя:	
• время нарастания переходной характеристики, нс,	10
не более	
• предел линейности, мВт, не менее	1
• коэффициент преобразования, А/Вт, не менее,	
на длинах волн:	
• • 850 нм	0,5
 ■ 1310 HM 	0,6
• • 1550 нм	1,0
8. Диапазон регулировки вносимого затухания аттенюатором,	
дБ, не менее	80

9. Электропитание рабочего эталона осуществляется от сети	
переменного тока:	
• напряжением, В	220±22
• частотой, Гц	50±0,5
10. Габаритные размеры, мм:	
• тестера оптического OT-2-3	292×250×56
 преобразователя измерительного ПР – 2 	80×100×30
• аттенюатора оптического FOD 5418	147×74×35
11. Масса комплекта, кг, не более	3,5

Рабочими условиями эксплуатации РЭСМ-2-3 являются:

•	напряжение питающей сети, В	220 ±	22
•	частота питающей сети, Гц	. 50 ±	0,5
•	температура окружающей среды, °С	20	± 5
•	относительная влажность, %, до		85

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на титульный лист Руководства по эксплуатации.

КОМПЛЕКТНОСТЬ

Наименование	Кол.
1. Рабочий эталон средней мощности в ВОСП РЭСМ-2-3 в составе:	
• Тестер оптический ОТ-2-3 *)	1
• Программируемый оптический аттенюатор. Модель FOD 5418 **)	1
 Преобразователь измерительный ПР – 2 в составе: 	1

Наименование	Кол.
• кабель соединительный	1
• коаксиальный тройник	1
• нагрузка 50 Ом	1
• нагрузка 1000 Ом	1
2. Рабочий эталон средней мощности в ВОСП РЭСМ-2-3. Руководство	
по эксплуатации.	1
3. Тестер оптический ОТ-2-3. Руководство по эксплуатации	1
4. Программируемый оптический аттенюатор. Модель FOD 5418, FOD	
5419. Техническое описание и инструкция по эксплуатации	1
5. Измерители оптической мощности, источники оптического излучения	
и оптические тестеры малогабаритные в волоконно-оптических сис-	
темах передачи. Методика поверки. МИ 2505-98	1

^{*) -} Состав тестера определяется документом: «Тестер оптический ОТ-2-3. Руководство по эксплуатации».

ПОВЕРКА

Поверка рабочего эталона осуществляется в соответствии с методикой поверки, утверждённой ФГУП ВНИИОФИ в 2005 г. («Проверка метрологических характеристик РЭСМ-2-3. Методика поверки.», раздел 4 Руководства по эксплуатации).

Межповерочный интервал -1 год.

Средства поверки:

- УВТ для воспроизведения единицы средней мощности оптического излучения в ВОСП (Рег. № УВТ-92А-99);

^{**) -} Состав аттенюатора определяется документом: «Программируемый оптический аттенюатор. Модель FOD 5418, FOD 5419. Техническое описание и инструкция по эксплуатации».

- установка для измерения нелинейности приемников оптического излу-

чения (аттестованная в установленном порядке);

- установка для измерения спектральных характеристик приемникоа и

источников оптического излучения (аттестованная в установленном порядке);

- рабочий эталон средней мощности в волоконно-оптических системах

передачи РЭСМ-В (аттестованный в установленном порядке).

НОРМАТИВНЫЕ ДОКУМЕНТЫ

МИ 2558-99 «Государственная поверочная схема для средств измерений

средней мощности оптического излучения в волоконно-оптических системах

передачи».

ЗАКЛЮЧЕНИЕ

Тип: «Рабочий эталон единицы средней мощности в волоконно-

оптических системах передачи РЭСМ-2-3» утвержден с техническими и мет-

рологическими характеристиками, приведенными в настоящем описании типа,

метрологически обеспечен в эксплуатации согласно государственной повероч-

ной схеме МИ 2558-99.

Изготовитель: ФГУП ВНИИОФИ

Адрес: 119361, г. Москва, ул. Озерная, 46

Заместитель директора

ФГУП ВНИИОФИ

9 Baceuf

Золотаревский Ю. М.