

ФЕДЕРАЛЬНОЕ АГЕНТСТВО
ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.34.004.A № 45798

Срок действия до 19 марта 2017 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Комплекты ввода-вывода КВВ

ИЗГОТОВИТЕЛЬ
ООО "СИНКРОСС", г. Саратов

РЕГИСТРАЦИОННЫЙ № 21207-12

ДОКУМЕНТ НА ПОВЕРКУ МП 21207-12

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 2 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 19 марта 2012 г. № 160

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства Е.Р.Петросян

"...... 2012 г.

Серия СИ

№ 003858

ОПИСАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

Комплекты ввода-вывода КВВ

Назначение средства измерений

Комплекты ввода-вывода КВВ (далее – КВВ) предназначены для измерения силы постоянного тока, напряжения, сопротивления, поступающих от первичных преобразователей температуры, давления, вибрации и т.п., расположенных во взрывоопасных зонах помещений и наружных установок, выполнения функций ввода-вывода, логической обработки сигналов.

Описание средства измерений

Комплекты КВВ изготавливаются в модификациях КВВ-3 или КВВ-6, различающихся между собой видом взрывозащиты, конструкцией оболочки, напряжением питания, сочетанием и количеством блоков ТВР, ТДК, РТК, ДВВ, выбираемых потребителем при заказе.

Комплекты КВВ могут применяться как автономно, так и в составе других технических средств контроля, сигнализации, управления и защиты, объединенных в сеть интерфейсами с аппаратурой верхнего уровня для решения задач автоматизации.

КВВ-3 выполнены в оболочке из АВС-пластика, монтируемой на DIN-рельс и имеющей степень защиты не ниже IP20 по ГОСТ 14254. В состав КВВ-3 входит до трех блоков ТВР, ТДК, ДВВ, РТК в любом сочетании. КВВ-3 предназначен для эксплуатации вне взрывоопасных зон и, при наличии искробезопасных электрических цепей, имеет взрывозащищенное исполнение с маркировкой взрывозащиты [Exib]IIA.

КВВ-3 изготавливаются также в обыкновенном исполнении.

КВВ-6 во взрывозащищенном исполнении (КВВ-6/ХХХХ-X) выполнены в оболочке из стали, имеющей степень защиты не ниже IP54 по ГОСТ 14254. В состав КВВ-6 входит до пяти блоков ТВР, ТДК, ДВВ, РТК в любом сочетании. КВВ-6 предназначен для эксплуатации во взрывоопасных зонах класса 1 согласно ГОСТ Р 51330.9 помещений и наружных установок и имеет взрывозащищенное исполнение с видом взрывозащиты «взрывонепроницаемая оболочка» и/или «искробезопасная электрическая цепь» с маркировкой взрывозащиты 1ExdIIAT5, 1Exd[ib]IIAT5.

КВВ-6 изготавливаются также в обыкновенном исполнении (КВВ-6/ХХХХ-Х.О) и имеет степень защиты не ниже IP20 по ГОСТ 14254.

Внутри оболочки КВВ установлены направляющие и кросс-плата, к которой подключаются источник питания и блоки ТВР, ТДК, ДВВ, РТК. Через защитно-монтажные планки блоков выведены разъемы и клеммники для подключения входных и выходных сигналов

Блоки можно монтировать и демонтировать независимо друг от друга, что облегчает обслуживание комплектов КВВ в эксплуатации.

Общий вид комплектов КВВ представлен на рисунке 1.

Рисунок 1 – Фотография общего вида

Программное обеспечение

Программное обеспечение КВВ (ПО) является метрологически значимым. Идентификационные данные ПО приведены в таблице 1.

Таблица 1 - Идентификационные данные ПО

Наименование ПО	Идентификационное наименование ПО	Номер версии ПО	Цифровой иден- тификатор ПО	Алгоритм вычисления цифрового идентификатора
ПО Блока ТДК	-	111205	8B48	CRC-16
ПО Блока ТВР	-	111206	1E65	CRC-16

Указанные ниже метрологические характеристики КВВ нормированы с учетом метрологически значимого ПО.

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений – А (в соответствии с МИ 3286-2010).

Доступ к программному обеспечению извне невозможен, так как ПО загружено во внутреннюю память микросхемы микроконтроллера и установлен бит защиты от чтения и записи. Запись программы в микроконтроллер производится только на предприятии-изготовителе. Загрузка программного обеспечения по интерфейсу на применяемом микроконтроллере не предусмотрена конструкцией.

Метрологические и технические характеристики

Основные метрологические и технические характеристики KBB указаны в таблицах 1-3.

<u>Блок ТВР</u> обеспечивает измерение, обработку и передачу данных в приложениях, требующих стандартных аналоговых входов по току и напряжению, выход токового сигнала, и может выполнять функции релейного и ПИД-регулятора с возможностью питания датчиков током от 4 до 20 мА от встроенного источника питания.

В состав ТВР входит микроконтроллер и 4 канала с АЦП 16-бит. ТВР имеет гальванически развязанные (Γ P) входы, Γ P внешний последовательный интерфейс типа RS485, а также выходы для обеспечения функций регуляторов.

Диапазон измерения по каждому входу выбирается пользователем. Все настройки и данные калибровки хранятся в энергонезависимом ПЗУ.

Основные метрологические и технические характеристики ТВР приведены в таблице 1.

<u>Блок ТДК</u> обеспечивает измерение, обработку и передачу данных в приложениях, требующих стандартных входов от термопреобразователей сопротивления или термопар.

В состав ТДК входит микроконтроллер и 4 канала с АЦП 16-бит. ТДК имеет группу ГР входов, ГР внешний последовательный интерфейс типа RS485.

При работе с термопарами температура холодного спая измеряется встроенным датчиком. Возможно подключение внешнего датчика температуры холодного спая.

Тип датчика и его градуировка по каждому входу выбираются пользователем. Все настройки и данные калибровки хранятся в энергонезависимом ПЗУ.

Основные метрологические и технические характеристики ТДК приведены в таблице 1.

Таблина 1

таолица т	Значение			
Характеристика	TBP	ТДК		
Количество входов	4	4		
Диапазон входного сигнала	от 0 до 5 мА, от 0 до 20 мА, от 4 до 20 мА; от 0 до 5 В	ТСМ100М, 50М; ТСП100П, 50П, гр.21 от минус 40 до 200 °C; гр.23 от минус 40 до 180 °C. XA (K), XK (E), ЖК (J) от 0 до 1000 °C; XK (L) от 0 до 800 °C.		
Входное сопротивление: для сигналов тока, не более для сигналов напряжения, не менее	250 Ом; 30 кОм	-		
Пределы допускаемой приведенной погрешности каналов аналогового ввода	±0,1% от верхнего значения диапазона входного сигнала	±0,25% от диапазона входного сигнала		
Пределы допускаемой абсолютной погрешности канала компенсации с встроенным датчиком температуры	-	±1 °C (от 0 до 60 °C) ±3 °C (ниже 0 °C)		
Функции регулятора	Релейный, ПИД	-		
Количество выходов аналоговых/дискретных Диапазон выходного сигнала	1/2 От 4 до 20 мА			
Пределы допускаемой приведенной погрешности канала аналогового вывода	±0,5% от верхнего значения диапазона выходного сигнала	-		
Время цикла измерения по всем входам	0,125 с	2 c		
Интерфейс	RS 485	RS 485		

<u>Блок ДВВ</u> обеспечивает обработку и передачу данных в приложениях, требующих наличие дискретных входных/выходных сигналов. В состав ДВВ входит микроконтроллер, энергонезависимое ПЗУ, каскады ввода/вывода и ГР внешний последовательный интерфейс типа RS485. Все настройки программируются пользователем и хранятся в энергонезависимом ПЗУ. Основные технические характеристики ДВВ приведены в таблице 2. Таблица 2

Характеристика	Значение
Кол-во входов	24
Входные сигналы	Сухой контакт (СК) или
	открытый коллектор (ОК)
Ток опроса	10 mA
Напряжение холостого хода	15 B
Кол-во выходов	16
Выходные сигналы	Открытый коллектор (ОК)
	и/или эмиттер (ОЭ)
Коммутируемый пост. ток	300 мА
Коммутируемое напряжение пост. тока	36 B
Частота опроса	1 Гц, 10 Гц
Интерфейс	RS 485

<u>Блок РТК</u> обеспечивает возможность подключения дополнительных сегментов сети RS485 и MicroLAN, обработку и ввод-вывод данных по интерфейсу RS485 (RS232). В состав РТК входит микроконтроллер, энергонезависимое ПЗУ и три модуля ГР для подключения независимых интерфейсов MicroLAN, RS485 (RS232) верхнего и нижнего уровней. Все настройки выполняются пользователем и хранятся в энергонезависимом ПЗУ. Основные технические характеристики РТК приведены в таблице 3.

Таблица 3

Характеристика	Значение	
Кол-во интерфейсов: RS 485 (RS232)	2	
MicroLAN	1	
Кол-во подключаемых устройств на 1 интерфейс RS 485(RS232)	31	
Кол-во подключаемых устройств на интерфейс	31	
MicroLAN		
Длина сегмента сети RS485	1200 м	
Длина сегмента сети MicroLAN	240 м	

Основные технические характеристики комплектов ввода-вывода КВВ Число каналов измерения:

• KBB-3	- до 12;
• KBB-6/XXXX-1, KBB-6/XXXX-1.O	- до 16;
• KBB-6/XXXX-2, KBB-6/XXXX-2.O	- до 20.

Число дискретных входов/выходов - 24/16 (на один ДВВ).

Максимальное удаление датчиков, м, не более,

для термопреобразователейдля токовых300.

Потребляемая мощность, Вт, не более

• KBB-3 - 20;

• KBB-6 - 35.

- минус 20 - плюс 60 °C;

- минус 40 - плюс 60 °C,

Напряжение питания:

• KBB-3, KBB-6/XXXX-1, KBB-6/XXXX-1.0 - постоянное/переменное 220 В; • KBB-6/XXXX-2, KBB-6/XXXX-2.O - постоянное 24 В. Масса, кг, не более • KBB-3 - 2,5; • KBB-6/XXXX-X.O - 5,0; - 15.0. • KBB-6/XXXX-X Габаритные размеры, мм, не более • KBB-3 - 140 x 70 x 260; • KBB-6/XXXX-X - 400 x 250 x 280. • KBB-6/XXXX-X.O - 135 x 155 x 205. Рабочие условия применения: • KBB-6/XXXX-X.O - минус 10 - плюс 60 °C;

где XXXX – количество и тип блоков в коде заказа.

Знак утверждения типа

Знак утверждения типа наносится на оболочку КВВ и (или) на титульный лист эксплуатационной документации типографским способом.

Комплектность средства измерений

• KBB-3, KBB-6/XXXX-1

• KBB-6/XXXX-2

В комплект поставки КВВ входят:

- комплект ввода-вывода КВВ (состав блоков – по заказу потребителя) 1; - паспорт C2.390.003 ПС для КВВ-3 (C2.390.003-01 ПС для КВВ-6) 1; - методика поверки блоков ТВР, ТДК C2.390.000 МП (при наличии в составе КВВ блоков ТВР, ТДК) 1.

Поверка

осуществляется в соответствии с документом МП 21207-12 «Комплекты ввода-вывода КВВ. Методика поверки», утвержденным ФГУП «ВНИИМС» 27 октября 2011 г.

Перечень основного оборудования для поверки приведен в таблице 4.

Таблица 4

Наименование, тип	Метрологические характеристики		
Вольтметр универсальный	Диапазон измерения силы постоянного тока 0,1 мкА - 10		
B1-28	мА, Диапазон измерения напряжения постоянного тока		
	от 1 мкВ до 1000 В		
	Класс точности 0,01		
Магазин сопротивлений	Диапазон сопротивлений 0,001-1000 Ом		
P4831	Класс точности 0,02		

Сведения о методиках (методах) измерений: методы измерений приведены в документах: «Комплекты ввода-вывода КВВ-3. Паспорт С2.390.003 ПС», «Комплекты ввода-вывода КВВ-6. Паспорт С2.390.003-01 ПС».

Нормативные и технические документы, устанавливающие требования к комплектам ввода-вывода КВВ

ТУ 4217-004-12221545-01 «Комплекты ввода-вывода КВВ. Технические условия»

ГОСТ 6651-2009 «Термопреобразователи сопротивления. Общие технические требова-

ния и методы испытаний»

ГОСТ Р 8.585-2001 «Термопары. Номинальные статические характеристики преобразова-

«RИН

ГОСТ Р 51330.0-99 «Электрооборудование взрывозащищенное. Часть 0. Общие требова-

«RИН

ГОСТ Р 51330.10-99 «Электрооборудование взрывозащищенное. Часть 11. Искробезопасная

электрическая цепь "i"»

ГОСТ Р 51330.1-99 «Электрооборудование взрывозащищенное. Часть 1. Взрывозащита

вида "взрывонепроницаемая оболочка"»

ГОСТ 22261-94 Средства измерения электрических и магнитных величин. Общие технические условия.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений:

- выполнение работ по обеспечению безопасных условий и охраны труда; осуществление производственного контроля за соблюдением установленных законодательством Российской Федерации требований промышленной безопасности к эксплуатации опасного производственного объекта.

Изготовитель

ООО «СИНКРОСС»

410010, г. Саратов, ул. Жуковского, д. 9А

Тел./факс: (8452) 55-66-56 E-mail: <u>office@sinkross.ru</u>

Испытательный центр

Государственный центр испытаний средств измерений

Федеральное государственное унитарное предприятие

«Всероссийский научно-исследовательский институт

метрологической службы» (ГЦИ СИ ФГУП «ВНИИМС»)

Аттестат аккредитации – зарегистрирован в Государственном

реестре СИ под № 30004-08.

Москва, 119361, ул. Озерная, д. 46

Тел. (495) 437-55-77, (495) 430-57-25 Факс (495) 437-56-66, (495) 430-57-25

E-mail: 201-vm@vniims.ru

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

E.P. He	тросян
---------	--------

«»	 20)1	2	Γ