

Электроды ионоселективные ХС.001

Внесены в Государственный реестр средств измерений. Регистрационный № 13763-05

Взамен № 13763-00

Выпускаются по техническим условиям ТУ-4215-021-31040756-05

Назначение и область применения

Электроды ионоселективные XC.001 предназначены для измерений активности ионов серебра, меди, свинца, кадмия, ртути (II), таллия (I), железа (III), хрома (VI), калия, аммония, натрия, кальция, магния, цинка, кальция+магния, фторида, хлорида, бромида, иодида, цианида, тиоцианата, сульфида, карбоната, сульфата, цитрата и нитрата в водных растворах.

Область применения: химическая промышленность, геология, медикобиологические исследования, экологический мониторинг природных, сбросных и сточных вод, контроль технологических процессов.

Описание

Ионоселективные электроды являются электрохимическими первичными измерительными преобразователями, потенциал которых зависит от активности определенного вида ионов в растворе.

Измерение активности ионов (рX) проводится методом прямой потенциометрии, т.е. измерением потенциала ионоселективного электрода относительно электрода сравнения.

В зависимости от назначения, выпускаются халькогенидные стеклянные, кристаллические и пленочные электроды.

Основные технические характеристики

Условия эксплуатации:

- диапазон температуры окружающего воздуха от 10 до 35 °C;
- относительная влажность воздуха от 10 до 80 % при 25 °C;
- атмосферное давление от 84 до 106,7 кПа (от 630 до 800 мм рт.ст.).

Диапазоны измерений молярной (массовой) концентрации определяемых ионов в водных растворах приведены в табл. 1.

Таблица 1.

таолица	t 1.				
Ионы	Диапазон изме-	Ионы	Диапазон изме-	Ионы	Диапазон изме-
	ряемых концен-		ряемых концен-		ряемых концен-
	траций, моль/дм ³		траций, моль/дм 3		траций, моль/дм ³
	$(M\Gamma/дM^3)$		(мг/дм ³)		(мг/дм ³)
Ag^{+}	10 ⁻⁷ - 1	Cl	10 ⁻⁵ - 1	Cit	$10^{-5} - 10^{-1}$
İ	$(108 \ 10^{-4} - 108 \ 10^{3})$		$(0,35-35\ 10^3)$		$(1,9-2\ 10^4)$
Cu ⁺²	10 ⁻⁷ - 1	Br	5 10 ⁻⁶ - 1	K ⁺	$5 \cdot 10^{-5} - 5 \cdot 10^{-1}$
	$(64\ 10^{-4}-64\ 10^3)$		$(8 \ 10^{-2} - 8 \ 10^4)$		$(2-210^4)$
Pb ⁺²	5 10 ⁻⁷ - 1	Γ	5 10 ⁻⁷ - 1	$\mathrm{NH_4}^+$	5 10 ⁻⁴ - 5 10 ⁻¹
	$(414\ 10^{-4}-207\ 10^3)$		$(13\ 10^{-3}-13\ 10^4)$		$(0,4-910^3)$
Cd ⁺²	5 10 ⁻⁷ - 1	CN-	10 ⁻⁶ - 10 ⁻²	Na ⁺	$5 \cdot 10^{-5} - 5 \cdot 10^{-1}$
	$(56\ 10^{-5}-112\ 10^3)$		$(26\ 10^{-3}-260)$		$(1,2-1,2\ 10^4)$
Hg ⁺²	$10^{-6} - 10^{-1}$	CNS ⁻	10 ⁻⁶ - 1	Ca ⁺²	5 10 ⁻⁵ - 10 ⁻¹
	$(0,2-2010^3)$		$(6 \ 10^{-2} - 6 \ 10^4)$		$(0,4-4\ 10^3)$
$T1^{+}$	10 ⁻⁶ - 10 ⁻¹	S ⁻²	10 ⁻⁵ - 10 ⁻¹	Mg^{+2}	5 10 ⁻⁵ - 10 ⁻¹
	$(0,2-20\ 10^3)$		$(3 \ 10^{-1} - 3 \ 10^3)$		$(1,2-2,410^3)$
Fe ⁺³	10 ⁻⁵ - 10 ⁻²	NO ₃	$2 \cdot 10^{-6} - 2 \cdot 10^{-1}$	Zn^{+2}	5 10 ⁻⁵ - 10 ⁻¹
	(0,6-560)		$(0,3-62\ 10^3)$		$(3,2-610^3)$
Cr(VI)	10 ⁻⁷ - 10 ⁻⁴	CO ₃ -2	$10^{-7} - 10^{-3}$	Ca ⁺² +	10 ⁻⁴ - 10 ⁻¹
	$(52\ 10^{-4}-5,2)$		$(6 \ 10^{-3} - 60)$	Mg ⁺²	$(6,4-610^4)$
F		SO_4^{-2}			
	$(1.9 \ 10^{-2} - 1.9 \ 10^{3})$		$(9,6-9,610^3)$		
F	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SO ₄ ⁻²	$ \begin{array}{r} 10^{-4} - 10^{-1} \\ (9,6-9,6 10^{3}) \end{array} $	IVIG	(0,4-010)

Диапазоны линейности характеристики (функции) электродов приведены в таблице 2. Таблица 2.

Ионы	Диапазон ли-	Ионы	Диапазон ли-	Ионы	Диапазон ли-
	нейности функ-		нейности функ-		нейности функ-
	ции, моль/дм ³		ции, моль/дм ³		ции, моль/дм ³
$\frac{Ag^{+}}{Cu^{+2}}$	$10^{-6} - 10^{-2}$	Cl ⁻	10 ⁻⁴ - 10 ⁻¹	Cit	$10^{-5} - 5 \cdot 10^{-2}$
Cu ⁺²	$10^{-6} - 10^{-2}$	Br	$10^{-5} - 10^{-1}$	K^{+}	$2 \cdot 10^{-4} - 2 \cdot 10^{-1}$
Pb^{+2}	10^{-6} - 10^{-2}	I^{-}	$10^{-5} - 10^{-1}$	$\mathrm{NH_4}^+$	$5 \cdot 10^{-4} - 2 \cdot 10^{-1}$
Cd^{+2}	10 ⁻⁶ - 10 ⁻²	CN ⁻	$10^{-6} - 10^{-2}$	Na ⁺	5 10 ⁻⁵ - 10 ⁻²
Hg ^{+2*}	10 ⁻⁶ - 10 ⁻²	CNS ⁻	$10^{-5} - 10^{-1}$	Ca ⁺²	5 10 ⁻⁴ - 10 ⁻²
$T1^{+}$	5 10 ⁻⁶ - 10 ⁻¹	S ⁻²	$10^{-5} - 10^{-2}$	Mg^{+2}	5 10 ⁻⁴ - 10 ⁻²
Fe ^{+3**}	$10^{-5} - 10^{-2}$	NO ₃	$2 \cdot 10^{-5} - 10^{-1}$	Zn^{+2}	$10^{-4} - 5 \cdot 10^{-2}$
Cr(VI)***	$10^{-7} - 10^{-4}$	CO_3^{-2}	5 10 ⁻⁵ - 10 ⁻³	Ca ⁺² +	5 10 ⁻⁴ - 10 ⁻²
				Mg^{+2}	
F F	$10^{-5} - 10^{-1}$	SO_4^{-2}	$10^{-4} - 5 \ 10^{-2}$		Assemble VI P F 1 - VI

 $^{^{*}\,}$ - электроды на ионы Hg $^{2+}\,$ характеризуются двумя диапазонами линейности:

а) 10^{-6} - 10^{-4} моль/дм 3 - угловой коэффициент (30 ± 15) мВ б) 10^{-4} - 10^{-2} моль/дм 3 - угловой коэффициент (45 ± 10) мВ

** - электроды на ионы Fe 3+ характеризуются тремя диапазонами линейности:

а) 10 $^{\text{-5}}$ -10 $^{\text{-4}}\,$ моль/дм $^{3}\,$ - угловой коэффициент (20 \pm 10) мВ

б) 10^{-4} - 10^{-3} моль/дм 3 - угловой коэффициент (35 \pm 10) мВ

в) 10^{-3} - 10^{-2} моль/дм 3 - угловой коэффициент (55 \pm 15) мВ

*** - электроды на ионы Cr(VI) характеризуются двумя диапазонами ли-

нейности:

а) 10^{-7} - 10^{-6} моль/дм 3 - угловой коэффициент (30 ± 10) мВ б) 10^{-6} - 10^{-4} моль/дм 3 - угловой коэффициент (60 ± 20) мВ

Значения крутизны электродной функции в диапазоне линейности в растворах определяемых ионов при температуре $(25 \pm 1)^{\circ}$ С приведены в табл. 3.

Таблица 3.

Ионы	Значения кру-	Ионы	Значения кру-	Ионы	Значения кру-
	тизны, мВ/рХ		тизны, мВ/рХ		тизны, мВ/рХ
Ag ⁺ Cu ⁺²	58 ± 2	Cl ⁻	58 ± 2	Cit	24 ± 2
	28 ± 2	Br ⁻	58 ± 2	K ⁺	55 ± 3
Pb ⁺²	28 ± 2	I-	58 ± 2	NH ₄ ⁺	55 ± 3
Cd ⁺²	27 ± 2	CN⁻	57 ± 3	Na ⁺	54 ± 3
Hg ⁺²	*	CNS ⁻	57 ± 3	Ca ⁺²	27 ± 2
TI^{+}	40 ± 15	S ⁻²	35 ± 10	Mg^{+2}	27 ± 2
Fe ⁺³	**	NO_3	54 ± 4	Zn^{+2}	50 ± 3
Cr(VI)	***	CO_3^{-2}	28 ± 3	Ca ⁺² +	25 ± 3
				Mg^{+2}	
-	58 ± 2	SO_4^{-2}	26 ± 2		

^{*-} в зависимости от концентрации значение кругизны составляет для интервала:

от
$$10^{-6}$$
 до 10^{-4} моль/дм 3 (30 ± 15) мВ от. 10^{-4} до 10^{-2} моль/дм 3 (45 ± 10) мВ

**- в зависимости от концентрации значение крутизны составляет для

интервала:

от
$$10^{-5}$$
 до 10^{-4} моль/дм 3 (20 ± 10) мВ от. 10^{-4} до 10^{-3} моль/дм 3 (35 ± 10) мВ от. 10^{-3} до 10^{-2} моль/дм 3 (55 ± 15) мВ

***- в зависимости от концентрации значение крутизны составляет для интервала:

от
$$10^{-7}$$
 до 10^{-6} моль/дм 3 (30 ± 10) мВ от. 10^{-6} до 10^{-4} моль/дм 3 (60 ± 20) мВ

Значения потенциалов электродов относительно хлорсеребряного образцового электрода сравнения в растворах с молярной концентрацией определяемых ионов 10⁻³ моль/дм³ при температуре $(25 \pm 1)^{\circ}$ С приведены в табл.4. Таблина 4.

Ионы	Значения потен-	Ионы	Значения потен-	Ионы	Значения по-
	циалов,		циалов,		тенциалов,
	Е, мВ		Е, мВ		Е, мВ

Ag^{+}	600 ± 20	Cl ⁻	190 ± 20	Cit	370 ± 20
Cu ⁺²	190 ± 20	Br	55 ± 20	K ⁺	120 ± 30
Pb ⁺²	-190 ± 20	I-	- 190 ± 20	NH ₄ ⁺	350 ± 30
Cd ⁺²	-280 ± 20	CN ⁻	-190 ± 20	Na ⁺	90 ± 20
Hg^{+2}	370 ± 20	CNS ⁻	50 ± 20	Ca ⁺²	250 ± 30
TI ⁺	-170 ± 20	S ^{-2*}	-630 ± 30	Mg^{+2}	70 ± 20
Fe ⁺³	190 ± 20	NO_3^-	350 ± 30	Zn ⁺²	120 ± 20
Cr(VI)	310 ± 20	CO ₃ -2	150 ± 20	Ca ⁺² +	100 ± 20
				Mg^{+2}	
F	90 ± 20	SO_4^{-2}	180 ± 20		

^{* -} при рН раствора, равном 9,18 ед.рН.

Время отклика - не более 3 мин..

Габаритные размеры электрода: длина (150 \pm 1) мм, диаметр (8,0 \pm 0,5) мм.

Масса электрода (25 ± 1) г.

Срок службы электродов при соблюдении условий их эксплуатации - не менее 12 месяцев (для электродов на ионы NO_3^- , K^+ , NH_4^+ , Ca^{2+} , Zn^{2+} , Na^+ , CO_3^{2-} , SO_4^{2-} , Cit^{2+} , Mg^{2+} , $Ca^{2+}+Mg^{2+}$ - 8 мес.).

Знак утверждения типа

Знак утверждения типа наносится на титульный лист паспорта.

Комплектность

- ионоселективный электрод;
- паспорт;
- методика поверки.

Поверка

Поверка электродов производится в соответствии с методиками поверки в составе руководства по эксплуатации, утвержденными ГЦИ СИ «ВНИИМ им.Д.И.Менделеева» в мае 2005 г.; основные средства поверки – стандартные образцы состава определяемых ионов ГСО 6690-93; 7998-93; 8004-93; 7012-93; 6687-93; 7436-98; 8092-94; 7015-93; 7107-94; 8065-94; 7190-95; 6696-93; насыщенный хлорсеребряный образцовый электрод сравнения 2-го разряда типа ЭСО-01 или типа ЭВЛ-1М3.1 и ЭВЛ-1М3.104.1; высокоомный прибор для измерения ЭДС с входным сопротивлением не менее 10¹¹ Ом, например, И-130, В7-23, В7-40.

Межповерочный интервал - 1 год.

Нормативные и технические документы

Технические условия ТУ-4215-021-31040756-05

Заключение

Тип электродов ионоселективных XC.001 утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, и метрологически обеспечен при выпуске из производства и в эксплуатации.

Изготовитель: ООО «НПФ Анакон»

Адрес: Россия, 199014, Санкт-Петербург, ул. Некрасова, д.60, лит. А

Директор ООО «НПФ Анакон»

В.И.Стюф